Solve for x
x=1+i
Share
Copied to clipboard
x^{2}+\left(-2-2i\right)x+2i=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{2+2i±\sqrt{\left(-2-2i\right)^{2}-4\times \left(2i\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2-2i for b, and 2i for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{2+2i±\sqrt{8i-4\times \left(2i\right)}}{2}
Square -2-2i.
x=\frac{2+2i±\sqrt{8i-8i}}{2}
Multiply -4 times 2i.
x=\frac{2+2i±\sqrt{0}}{2}
Add 8i to -8i.
x=-\frac{-2-2i}{2}
Take the square root of 0.
x=1+i
Divide 2+2i by 2.
x^{2}+\left(-2-2i\right)x+2i=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\left(x+\left(-1-i\right)\right)^{2}=0
Factor x^{2}+\left(-2-2i\right)x+2i. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\left(-1-i\right)\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+\left(-1-i\right)=0 x+\left(-1-i\right)=0
Simplify.
x=1+i x=1+i
Add 1+i to both sides of the equation.
x=1+i
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}