Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-18x-7=-5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-18x-7-\left(-5\right)=-5-\left(-5\right)
Add 5 to both sides of the equation.
x^{2}-18x-7-\left(-5\right)=0
Subtracting -5 from itself leaves 0.
x^{2}-18x-2=0
Subtract -5 from -7.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -18 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-2\right)}}{2}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324+8}}{2}
Multiply -4 times -2.
x=\frac{-\left(-18\right)±\sqrt{332}}{2}
Add 324 to 8.
x=\frac{-\left(-18\right)±2\sqrt{83}}{2}
Take the square root of 332.
x=\frac{18±2\sqrt{83}}{2}
The opposite of -18 is 18.
x=\frac{2\sqrt{83}+18}{2}
Now solve the equation x=\frac{18±2\sqrt{83}}{2} when ± is plus. Add 18 to 2\sqrt{83}.
x=\sqrt{83}+9
Divide 18+2\sqrt{83} by 2.
x=\frac{18-2\sqrt{83}}{2}
Now solve the equation x=\frac{18±2\sqrt{83}}{2} when ± is minus. Subtract 2\sqrt{83} from 18.
x=9-\sqrt{83}
Divide 18-2\sqrt{83} by 2.
x=\sqrt{83}+9 x=9-\sqrt{83}
The equation is now solved.
x^{2}-18x-7=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-18x-7-\left(-7\right)=-5-\left(-7\right)
Add 7 to both sides of the equation.
x^{2}-18x=-5-\left(-7\right)
Subtracting -7 from itself leaves 0.
x^{2}-18x=2
Subtract -7 from -5.
x^{2}-18x+\left(-9\right)^{2}=2+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-18x+81=2+81
Square -9.
x^{2}-18x+81=83
Add 2 to 81.
\left(x-9\right)^{2}=83
Factor x^{2}-18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{83}
Take the square root of both sides of the equation.
x-9=\sqrt{83} x-9=-\sqrt{83}
Simplify.
x=\sqrt{83}+9 x=9-\sqrt{83}
Add 9 to both sides of the equation.