Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x-18\right)
Factor out x.
x^{2}-18x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±18}{2}
Take the square root of \left(-18\right)^{2}.
x=\frac{18±18}{2}
The opposite of -18 is 18.
x=\frac{36}{2}
Now solve the equation x=\frac{18±18}{2} when ± is plus. Add 18 to 18.
x=18
Divide 36 by 2.
x=\frac{0}{2}
Now solve the equation x=\frac{18±18}{2} when ± is minus. Subtract 18 from 18.
x=0
Divide 0 by 2.
x^{2}-18x=\left(x-18\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 18 for x_{1} and 0 for x_{2}.