Factor
\left(x-92\right)\left(x-78\right)
Evaluate
\left(x-92\right)\left(x-78\right)
Graph
Share
Copied to clipboard
a+b=-170 ab=1\times 7176=7176
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+7176. To find a and b, set up a system to be solved.
-1,-7176 -2,-3588 -3,-2392 -4,-1794 -6,-1196 -8,-897 -12,-598 -13,-552 -23,-312 -24,-299 -26,-276 -39,-184 -46,-156 -52,-138 -69,-104 -78,-92
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 7176.
-1-7176=-7177 -2-3588=-3590 -3-2392=-2395 -4-1794=-1798 -6-1196=-1202 -8-897=-905 -12-598=-610 -13-552=-565 -23-312=-335 -24-299=-323 -26-276=-302 -39-184=-223 -46-156=-202 -52-138=-190 -69-104=-173 -78-92=-170
Calculate the sum for each pair.
a=-92 b=-78
The solution is the pair that gives sum -170.
\left(x^{2}-92x\right)+\left(-78x+7176\right)
Rewrite x^{2}-170x+7176 as \left(x^{2}-92x\right)+\left(-78x+7176\right).
x\left(x-92\right)-78\left(x-92\right)
Factor out x in the first and -78 in the second group.
\left(x-92\right)\left(x-78\right)
Factor out common term x-92 by using distributive property.
x^{2}-170x+7176=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-170\right)±\sqrt{\left(-170\right)^{2}-4\times 7176}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-170\right)±\sqrt{28900-4\times 7176}}{2}
Square -170.
x=\frac{-\left(-170\right)±\sqrt{28900-28704}}{2}
Multiply -4 times 7176.
x=\frac{-\left(-170\right)±\sqrt{196}}{2}
Add 28900 to -28704.
x=\frac{-\left(-170\right)±14}{2}
Take the square root of 196.
x=\frac{170±14}{2}
The opposite of -170 is 170.
x=\frac{184}{2}
Now solve the equation x=\frac{170±14}{2} when ± is plus. Add 170 to 14.
x=92
Divide 184 by 2.
x=\frac{156}{2}
Now solve the equation x=\frac{170±14}{2} when ± is minus. Subtract 14 from 170.
x=78
Divide 156 by 2.
x^{2}-170x+7176=\left(x-92\right)\left(x-78\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 92 for x_{1} and 78 for x_{2}.
x ^ 2 -170x +7176 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 170 rs = 7176
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 85 - u s = 85 + u
Two numbers r and s sum up to 170 exactly when the average of the two numbers is \frac{1}{2}*170 = 85. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(85 - u) (85 + u) = 7176
To solve for unknown quantity u, substitute these in the product equation rs = 7176
7225 - u^2 = 7176
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 7176-7225 = -49
Simplify the expression by subtracting 7225 on both sides
u^2 = 49 u = \pm\sqrt{49} = \pm 7
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =85 - 7 = 78 s = 85 + 7 = 92
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}