Solve for x
x=25
x=144
Graph
Share
Copied to clipboard
x^{2}-169x+3600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-169\right)±\sqrt{\left(-169\right)^{2}-4\times 3600}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -169 for b, and 3600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-169\right)±\sqrt{28561-4\times 3600}}{2}
Square -169.
x=\frac{-\left(-169\right)±\sqrt{28561-14400}}{2}
Multiply -4 times 3600.
x=\frac{-\left(-169\right)±\sqrt{14161}}{2}
Add 28561 to -14400.
x=\frac{-\left(-169\right)±119}{2}
Take the square root of 14161.
x=\frac{169±119}{2}
The opposite of -169 is 169.
x=\frac{288}{2}
Now solve the equation x=\frac{169±119}{2} when ± is plus. Add 169 to 119.
x=144
Divide 288 by 2.
x=\frac{50}{2}
Now solve the equation x=\frac{169±119}{2} when ± is minus. Subtract 119 from 169.
x=25
Divide 50 by 2.
x=144 x=25
The equation is now solved.
x^{2}-169x+3600=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-169x+3600-3600=-3600
Subtract 3600 from both sides of the equation.
x^{2}-169x=-3600
Subtracting 3600 from itself leaves 0.
x^{2}-169x+\left(-\frac{169}{2}\right)^{2}=-3600+\left(-\frac{169}{2}\right)^{2}
Divide -169, the coefficient of the x term, by 2 to get -\frac{169}{2}. Then add the square of -\frac{169}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-169x+\frac{28561}{4}=-3600+\frac{28561}{4}
Square -\frac{169}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-169x+\frac{28561}{4}=\frac{14161}{4}
Add -3600 to \frac{28561}{4}.
\left(x-\frac{169}{2}\right)^{2}=\frac{14161}{4}
Factor x^{2}-169x+\frac{28561}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{169}{2}\right)^{2}}=\sqrt{\frac{14161}{4}}
Take the square root of both sides of the equation.
x-\frac{169}{2}=\frac{119}{2} x-\frac{169}{2}=-\frac{119}{2}
Simplify.
x=144 x=25
Add \frac{169}{2} to both sides of the equation.
x ^ 2 -169x +3600 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 169 rs = 3600
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{169}{2} - u s = \frac{169}{2} + u
Two numbers r and s sum up to 169 exactly when the average of the two numbers is \frac{1}{2}*169 = \frac{169}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{169}{2} - u) (\frac{169}{2} + u) = 3600
To solve for unknown quantity u, substitute these in the product equation rs = 3600
\frac{28561}{4} - u^2 = 3600
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 3600-\frac{28561}{4} = -\frac{14161}{4}
Simplify the expression by subtracting \frac{28561}{4} on both sides
u^2 = \frac{14161}{4} u = \pm\sqrt{\frac{14161}{4}} = \pm \frac{119}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{169}{2} - \frac{119}{2} = 25 s = \frac{169}{2} + \frac{119}{2} = 144
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}