Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-16x+50=21
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-16x+50-21=21-21
Subtract 21 from both sides of the equation.
x^{2}-16x+50-21=0
Subtracting 21 from itself leaves 0.
x^{2}-16x+29=0
Subtract 21 from 50.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 29}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -16 for b, and 29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 29}}{2}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-116}}{2}
Multiply -4 times 29.
x=\frac{-\left(-16\right)±\sqrt{140}}{2}
Add 256 to -116.
x=\frac{-\left(-16\right)±2\sqrt{35}}{2}
Take the square root of 140.
x=\frac{16±2\sqrt{35}}{2}
The opposite of -16 is 16.
x=\frac{2\sqrt{35}+16}{2}
Now solve the equation x=\frac{16±2\sqrt{35}}{2} when ± is plus. Add 16 to 2\sqrt{35}.
x=\sqrt{35}+8
Divide 16+2\sqrt{35} by 2.
x=\frac{16-2\sqrt{35}}{2}
Now solve the equation x=\frac{16±2\sqrt{35}}{2} when ± is minus. Subtract 2\sqrt{35} from 16.
x=8-\sqrt{35}
Divide 16-2\sqrt{35} by 2.
x=\sqrt{35}+8 x=8-\sqrt{35}
The equation is now solved.
x^{2}-16x+50=21
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-16x+50-50=21-50
Subtract 50 from both sides of the equation.
x^{2}-16x=21-50
Subtracting 50 from itself leaves 0.
x^{2}-16x=-29
Subtract 50 from 21.
x^{2}-16x+\left(-8\right)^{2}=-29+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-29+64
Square -8.
x^{2}-16x+64=35
Add -29 to 64.
\left(x-8\right)^{2}=35
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{35}
Take the square root of both sides of the equation.
x-8=\sqrt{35} x-8=-\sqrt{35}
Simplify.
x=\sqrt{35}+8 x=8-\sqrt{35}
Add 8 to both sides of the equation.