Solve for x
x=\sqrt{42}+8\approx 14.480740698
x=8-\sqrt{42}\approx 1.519259302
Graph
Share
Copied to clipboard
x^{2}-16x+20=-2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-16x+20-\left(-2\right)=-2-\left(-2\right)
Add 2 to both sides of the equation.
x^{2}-16x+20-\left(-2\right)=0
Subtracting -2 from itself leaves 0.
x^{2}-16x+22=0
Subtract -2 from 20.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 22}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -16 for b, and 22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 22}}{2}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-88}}{2}
Multiply -4 times 22.
x=\frac{-\left(-16\right)±\sqrt{168}}{2}
Add 256 to -88.
x=\frac{-\left(-16\right)±2\sqrt{42}}{2}
Take the square root of 168.
x=\frac{16±2\sqrt{42}}{2}
The opposite of -16 is 16.
x=\frac{2\sqrt{42}+16}{2}
Now solve the equation x=\frac{16±2\sqrt{42}}{2} when ± is plus. Add 16 to 2\sqrt{42}.
x=\sqrt{42}+8
Divide 16+2\sqrt{42} by 2.
x=\frac{16-2\sqrt{42}}{2}
Now solve the equation x=\frac{16±2\sqrt{42}}{2} when ± is minus. Subtract 2\sqrt{42} from 16.
x=8-\sqrt{42}
Divide 16-2\sqrt{42} by 2.
x=\sqrt{42}+8 x=8-\sqrt{42}
The equation is now solved.
x^{2}-16x+20=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-16x+20-20=-2-20
Subtract 20 from both sides of the equation.
x^{2}-16x=-2-20
Subtracting 20 from itself leaves 0.
x^{2}-16x=-22
Subtract 20 from -2.
x^{2}-16x+\left(-8\right)^{2}=-22+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-22+64
Square -8.
x^{2}-16x+64=42
Add -22 to 64.
\left(x-8\right)^{2}=42
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{42}
Take the square root of both sides of the equation.
x-8=\sqrt{42} x-8=-\sqrt{42}
Simplify.
x=\sqrt{42}+8 x=8-\sqrt{42}
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}