Factor
\left(x-\left(75-3\sqrt{559}\right)\right)\left(x-\left(3\sqrt{559}+75\right)\right)
Evaluate
x^{2}-150x+594
Graph
Share
Copied to clipboard
x^{2}-150x+594=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-150\right)±\sqrt{\left(-150\right)^{2}-4\times 594}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-150\right)±\sqrt{22500-4\times 594}}{2}
Square -150.
x=\frac{-\left(-150\right)±\sqrt{22500-2376}}{2}
Multiply -4 times 594.
x=\frac{-\left(-150\right)±\sqrt{20124}}{2}
Add 22500 to -2376.
x=\frac{-\left(-150\right)±6\sqrt{559}}{2}
Take the square root of 20124.
x=\frac{150±6\sqrt{559}}{2}
The opposite of -150 is 150.
x=\frac{6\sqrt{559}+150}{2}
Now solve the equation x=\frac{150±6\sqrt{559}}{2} when ± is plus. Add 150 to 6\sqrt{559}.
x=3\sqrt{559}+75
Divide 150+6\sqrt{559} by 2.
x=\frac{150-6\sqrt{559}}{2}
Now solve the equation x=\frac{150±6\sqrt{559}}{2} when ± is minus. Subtract 6\sqrt{559} from 150.
x=75-3\sqrt{559}
Divide 150-6\sqrt{559} by 2.
x^{2}-150x+594=\left(x-\left(3\sqrt{559}+75\right)\right)\left(x-\left(75-3\sqrt{559}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 75+3\sqrt{559} for x_{1} and 75-3\sqrt{559} for x_{2}.
x ^ 2 -150x +594 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 150 rs = 594
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 75 - u s = 75 + u
Two numbers r and s sum up to 150 exactly when the average of the two numbers is \frac{1}{2}*150 = 75. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(75 - u) (75 + u) = 594
To solve for unknown quantity u, substitute these in the product equation rs = 594
5625 - u^2 = 594
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 594-5625 = -5031
Simplify the expression by subtracting 5625 on both sides
u^2 = 5031 u = \pm\sqrt{5031} = \pm \sqrt{5031}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =75 - \sqrt{5031} = 4.070 s = 75 + \sqrt{5031} = 145.930
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}