Solve for x (complex solution)
x=\frac{15+5\sqrt{15}i}{2}\approx 7.5+9.682458366i
x=\frac{-5\sqrt{15}i+15}{2}\approx 7.5-9.682458366i
Graph
Share
Copied to clipboard
x^{2}-15x=-150
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-15x-\left(-150\right)=-150-\left(-150\right)
Add 150 to both sides of the equation.
x^{2}-15x-\left(-150\right)=0
Subtracting -150 from itself leaves 0.
x^{2}-15x+150=0
Subtract -150 from 0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 150}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -15 for b, and 150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 150}}{2}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-600}}{2}
Multiply -4 times 150.
x=\frac{-\left(-15\right)±\sqrt{-375}}{2}
Add 225 to -600.
x=\frac{-\left(-15\right)±5\sqrt{15}i}{2}
Take the square root of -375.
x=\frac{15±5\sqrt{15}i}{2}
The opposite of -15 is 15.
x=\frac{15+5\sqrt{15}i}{2}
Now solve the equation x=\frac{15±5\sqrt{15}i}{2} when ± is plus. Add 15 to 5i\sqrt{15}.
x=\frac{-5\sqrt{15}i+15}{2}
Now solve the equation x=\frac{15±5\sqrt{15}i}{2} when ± is minus. Subtract 5i\sqrt{15} from 15.
x=\frac{15+5\sqrt{15}i}{2} x=\frac{-5\sqrt{15}i+15}{2}
The equation is now solved.
x^{2}-15x=-150
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-150+\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-15x+\frac{225}{4}=-150+\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-15x+\frac{225}{4}=-\frac{375}{4}
Add -150 to \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=-\frac{375}{4}
Factor x^{2}-15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{-\frac{375}{4}}
Take the square root of both sides of the equation.
x-\frac{15}{2}=\frac{5\sqrt{15}i}{2} x-\frac{15}{2}=-\frac{5\sqrt{15}i}{2}
Simplify.
x=\frac{15+5\sqrt{15}i}{2} x=\frac{-5\sqrt{15}i+15}{2}
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}