Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-14 ab=40
To solve the equation, factor x^{2}-14x+40 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-40 -2,-20 -4,-10 -5,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 40.
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
Calculate the sum for each pair.
a=-10 b=-4
The solution is the pair that gives sum -14.
\left(x-10\right)\left(x-4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=10 x=4
To find equation solutions, solve x-10=0 and x-4=0.
a+b=-14 ab=1\times 40=40
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+40. To find a and b, set up a system to be solved.
-1,-40 -2,-20 -4,-10 -5,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 40.
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
Calculate the sum for each pair.
a=-10 b=-4
The solution is the pair that gives sum -14.
\left(x^{2}-10x\right)+\left(-4x+40\right)
Rewrite x^{2}-14x+40 as \left(x^{2}-10x\right)+\left(-4x+40\right).
x\left(x-10\right)-4\left(x-10\right)
Factor out x in the first and -4 in the second group.
\left(x-10\right)\left(x-4\right)
Factor out common term x-10 by using distributive property.
x=10 x=4
To find equation solutions, solve x-10=0 and x-4=0.
x^{2}-14x+40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 40}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -14 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 40}}{2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-160}}{2}
Multiply -4 times 40.
x=\frac{-\left(-14\right)±\sqrt{36}}{2}
Add 196 to -160.
x=\frac{-\left(-14\right)±6}{2}
Take the square root of 36.
x=\frac{14±6}{2}
The opposite of -14 is 14.
x=\frac{20}{2}
Now solve the equation x=\frac{14±6}{2} when ± is plus. Add 14 to 6.
x=10
Divide 20 by 2.
x=\frac{8}{2}
Now solve the equation x=\frac{14±6}{2} when ± is minus. Subtract 6 from 14.
x=4
Divide 8 by 2.
x=10 x=4
The equation is now solved.
x^{2}-14x+40=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-14x+40-40=-40
Subtract 40 from both sides of the equation.
x^{2}-14x=-40
Subtracting 40 from itself leaves 0.
x^{2}-14x+\left(-7\right)^{2}=-40+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-40+49
Square -7.
x^{2}-14x+49=9
Add -40 to 49.
\left(x-7\right)^{2}=9
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-7=3 x-7=-3
Simplify.
x=10 x=4
Add 7 to both sides of the equation.
x ^ 2 -14x +40 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 14 rs = 40
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 7 - u s = 7 + u
Two numbers r and s sum up to 14 exactly when the average of the two numbers is \frac{1}{2}*14 = 7. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(7 - u) (7 + u) = 40
To solve for unknown quantity u, substitute these in the product equation rs = 40
49 - u^2 = 40
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 40-49 = -9
Simplify the expression by subtracting 49 on both sides
u^2 = 9 u = \pm\sqrt{9} = \pm 3
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =7 - 3 = 4 s = 7 + 3 = 10
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.