Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-12500x+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12500\right)±\sqrt{\left(-12500\right)^{2}-4\times 6}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -12500 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12500\right)±\sqrt{156250000-4\times 6}}{2}
Square -12500.
x=\frac{-\left(-12500\right)±\sqrt{156250000-24}}{2}
Multiply -4 times 6.
x=\frac{-\left(-12500\right)±\sqrt{156249976}}{2}
Add 156250000 to -24.
x=\frac{-\left(-12500\right)±2\sqrt{39062494}}{2}
Take the square root of 156249976.
x=\frac{12500±2\sqrt{39062494}}{2}
The opposite of -12500 is 12500.
x=\frac{2\sqrt{39062494}+12500}{2}
Now solve the equation x=\frac{12500±2\sqrt{39062494}}{2} when ± is plus. Add 12500 to 2\sqrt{39062494}.
x=\sqrt{39062494}+6250
Divide 12500+2\sqrt{39062494} by 2.
x=\frac{12500-2\sqrt{39062494}}{2}
Now solve the equation x=\frac{12500±2\sqrt{39062494}}{2} when ± is minus. Subtract 2\sqrt{39062494} from 12500.
x=6250-\sqrt{39062494}
Divide 12500-2\sqrt{39062494} by 2.
x=\sqrt{39062494}+6250 x=6250-\sqrt{39062494}
The equation is now solved.
x^{2}-12500x+6=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-12500x+6-6=-6
Subtract 6 from both sides of the equation.
x^{2}-12500x=-6
Subtracting 6 from itself leaves 0.
x^{2}-12500x+\left(-6250\right)^{2}=-6+\left(-6250\right)^{2}
Divide -12500, the coefficient of the x term, by 2 to get -6250. Then add the square of -6250 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12500x+39062500=-6+39062500
Square -6250.
x^{2}-12500x+39062500=39062494
Add -6 to 39062500.
\left(x-6250\right)^{2}=39062494
Factor x^{2}-12500x+39062500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6250\right)^{2}}=\sqrt{39062494}
Take the square root of both sides of the equation.
x-6250=\sqrt{39062494} x-6250=-\sqrt{39062494}
Simplify.
x=\sqrt{39062494}+6250 x=6250-\sqrt{39062494}
Add 6250 to both sides of the equation.
x ^ 2 -12500x +6 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 12500 rs = 6
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 6250 - u s = 6250 + u
Two numbers r and s sum up to 12500 exactly when the average of the two numbers is \frac{1}{2}*12500 = 6250. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(6250 - u) (6250 + u) = 6
To solve for unknown quantity u, substitute these in the product equation rs = 6
39062500 - u^2 = 6
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 6-39062500 = -39062494
Simplify the expression by subtracting 39062500 on both sides
u^2 = 39062494 u = \pm\sqrt{39062494} = \pm \sqrt{39062494}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =6250 - \sqrt{39062494} = 0.000 s = 6250 + \sqrt{39062494} = 12500.000
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.