Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-124x-51=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-124\right)±\sqrt{\left(-124\right)^{2}-4\times 1\left(-51\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -124 for b, and -51 for c in the quadratic formula.
x=\frac{124±2\sqrt{3895}}{2}
Do the calculations.
x=\sqrt{3895}+62 x=62-\sqrt{3895}
Solve the equation x=\frac{124±2\sqrt{3895}}{2} when ± is plus and when ± is minus.
\left(x-\left(\sqrt{3895}+62\right)\right)\left(x-\left(62-\sqrt{3895}\right)\right)\geq 0
Rewrite the inequality by using the obtained solutions.
x-\left(\sqrt{3895}+62\right)\leq 0 x-\left(62-\sqrt{3895}\right)\leq 0
For the product to be ≥0, x-\left(\sqrt{3895}+62\right) and x-\left(62-\sqrt{3895}\right) have to be both ≤0 or both ≥0. Consider the case when x-\left(\sqrt{3895}+62\right) and x-\left(62-\sqrt{3895}\right) are both ≤0.
x\leq 62-\sqrt{3895}
The solution satisfying both inequalities is x\leq 62-\sqrt{3895}.
x-\left(62-\sqrt{3895}\right)\geq 0 x-\left(\sqrt{3895}+62\right)\geq 0
Consider the case when x-\left(\sqrt{3895}+62\right) and x-\left(62-\sqrt{3895}\right) are both ≥0.
x\geq \sqrt{3895}+62
The solution satisfying both inequalities is x\geq \sqrt{3895}+62.
x\leq 62-\sqrt{3895}\text{; }x\geq \sqrt{3895}+62
The final solution is the union of the obtained solutions.