Solve for x (complex solution)
x=\frac{-2\sqrt{186}i+24}{11}\approx 2.181818182-2.479669399i
x=\frac{24+2\sqrt{186}i}{11}\approx 2.181818182+2.479669399i
Graph
Share
Copied to clipboard
-11x^{2}+48x-120=0
Combine x^{2} and -12x^{2} to get -11x^{2}.
x=\frac{-48±\sqrt{48^{2}-4\left(-11\right)\left(-120\right)}}{2\left(-11\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -11 for a, 48 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\left(-11\right)\left(-120\right)}}{2\left(-11\right)}
Square 48.
x=\frac{-48±\sqrt{2304+44\left(-120\right)}}{2\left(-11\right)}
Multiply -4 times -11.
x=\frac{-48±\sqrt{2304-5280}}{2\left(-11\right)}
Multiply 44 times -120.
x=\frac{-48±\sqrt{-2976}}{2\left(-11\right)}
Add 2304 to -5280.
x=\frac{-48±4\sqrt{186}i}{2\left(-11\right)}
Take the square root of -2976.
x=\frac{-48±4\sqrt{186}i}{-22}
Multiply 2 times -11.
x=\frac{-48+4\sqrt{186}i}{-22}
Now solve the equation x=\frac{-48±4\sqrt{186}i}{-22} when ± is plus. Add -48 to 4i\sqrt{186}.
x=\frac{-2\sqrt{186}i+24}{11}
Divide -48+4i\sqrt{186} by -22.
x=\frac{-4\sqrt{186}i-48}{-22}
Now solve the equation x=\frac{-48±4\sqrt{186}i}{-22} when ± is minus. Subtract 4i\sqrt{186} from -48.
x=\frac{24+2\sqrt{186}i}{11}
Divide -48-4i\sqrt{186} by -22.
x=\frac{-2\sqrt{186}i+24}{11} x=\frac{24+2\sqrt{186}i}{11}
The equation is now solved.
-11x^{2}+48x-120=0
Combine x^{2} and -12x^{2} to get -11x^{2}.
-11x^{2}+48x=120
Add 120 to both sides. Anything plus zero gives itself.
\frac{-11x^{2}+48x}{-11}=\frac{120}{-11}
Divide both sides by -11.
x^{2}+\frac{48}{-11}x=\frac{120}{-11}
Dividing by -11 undoes the multiplication by -11.
x^{2}-\frac{48}{11}x=\frac{120}{-11}
Divide 48 by -11.
x^{2}-\frac{48}{11}x=-\frac{120}{11}
Divide 120 by -11.
x^{2}-\frac{48}{11}x+\left(-\frac{24}{11}\right)^{2}=-\frac{120}{11}+\left(-\frac{24}{11}\right)^{2}
Divide -\frac{48}{11}, the coefficient of the x term, by 2 to get -\frac{24}{11}. Then add the square of -\frac{24}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{48}{11}x+\frac{576}{121}=-\frac{120}{11}+\frac{576}{121}
Square -\frac{24}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{48}{11}x+\frac{576}{121}=-\frac{744}{121}
Add -\frac{120}{11} to \frac{576}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{24}{11}\right)^{2}=-\frac{744}{121}
Factor x^{2}-\frac{48}{11}x+\frac{576}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{24}{11}\right)^{2}}=\sqrt{-\frac{744}{121}}
Take the square root of both sides of the equation.
x-\frac{24}{11}=\frac{2\sqrt{186}i}{11} x-\frac{24}{11}=-\frac{2\sqrt{186}i}{11}
Simplify.
x=\frac{24+2\sqrt{186}i}{11} x=\frac{-2\sqrt{186}i+24}{11}
Add \frac{24}{11} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}