Factor
\left(x-\left(55-5\sqrt{119}\right)\right)\left(x-\left(5\sqrt{119}+55\right)\right)
Evaluate
x^{2}-110x+50
Graph
Share
Copied to clipboard
x^{2}-110x+50=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-110\right)±\sqrt{\left(-110\right)^{2}-4\times 50}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-110\right)±\sqrt{12100-4\times 50}}{2}
Square -110.
x=\frac{-\left(-110\right)±\sqrt{12100-200}}{2}
Multiply -4 times 50.
x=\frac{-\left(-110\right)±\sqrt{11900}}{2}
Add 12100 to -200.
x=\frac{-\left(-110\right)±10\sqrt{119}}{2}
Take the square root of 11900.
x=\frac{110±10\sqrt{119}}{2}
The opposite of -110 is 110.
x=\frac{10\sqrt{119}+110}{2}
Now solve the equation x=\frac{110±10\sqrt{119}}{2} when ± is plus. Add 110 to 10\sqrt{119}.
x=5\sqrt{119}+55
Divide 110+10\sqrt{119} by 2.
x=\frac{110-10\sqrt{119}}{2}
Now solve the equation x=\frac{110±10\sqrt{119}}{2} when ± is minus. Subtract 10\sqrt{119} from 110.
x=55-5\sqrt{119}
Divide 110-10\sqrt{119} by 2.
x^{2}-110x+50=\left(x-\left(5\sqrt{119}+55\right)\right)\left(x-\left(55-5\sqrt{119}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 55+5\sqrt{119} for x_{1} and 55-5\sqrt{119} for x_{2}.
x ^ 2 -110x +50 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 110 rs = 50
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 55 - u s = 55 + u
Two numbers r and s sum up to 110 exactly when the average of the two numbers is \frac{1}{2}*110 = 55. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(55 - u) (55 + u) = 50
To solve for unknown quantity u, substitute these in the product equation rs = 50
3025 - u^2 = 50
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 50-3025 = -2975
Simplify the expression by subtracting 3025 on both sides
u^2 = 2975 u = \pm\sqrt{2975} = \pm \sqrt{2975}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =55 - \sqrt{2975} = 0.456 s = 55 + \sqrt{2975} = 109.544
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}