Solve for x (complex solution)
x=\frac{28+i\times 4\sqrt{2351}}{5}\approx 5.6+38.789689352i
x=\frac{-i\times 4\sqrt{2351}+28}{5}\approx 5.6-38.789689352i
Graph
Share
Copied to clipboard
x^{2}-11.2x+1536=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11.2\right)±\sqrt{\left(-11.2\right)^{2}-4\times 1536}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -11.2 for b, and 1536 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11.2\right)±\sqrt{125.44-4\times 1536}}{2}
Square -11.2 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-11.2\right)±\sqrt{125.44-6144}}{2}
Multiply -4 times 1536.
x=\frac{-\left(-11.2\right)±\sqrt{-6018.56}}{2}
Add 125.44 to -6144.
x=\frac{-\left(-11.2\right)±\frac{8\sqrt{2351}i}{5}}{2}
Take the square root of -6018.56.
x=\frac{11.2±\frac{8\sqrt{2351}i}{5}}{2}
The opposite of -11.2 is 11.2.
x=\frac{56+8\sqrt{2351}i}{2\times 5}
Now solve the equation x=\frac{11.2±\frac{8\sqrt{2351}i}{5}}{2} when ± is plus. Add 11.2 to \frac{8i\sqrt{2351}}{5}.
x=\frac{28+4\sqrt{2351}i}{5}
Divide \frac{56+8i\sqrt{2351}}{5} by 2.
x=\frac{-8\sqrt{2351}i+56}{2\times 5}
Now solve the equation x=\frac{11.2±\frac{8\sqrt{2351}i}{5}}{2} when ± is minus. Subtract \frac{8i\sqrt{2351}}{5} from 11.2.
x=\frac{-4\sqrt{2351}i+28}{5}
Divide \frac{56-8i\sqrt{2351}}{5} by 2.
x=\frac{28+4\sqrt{2351}i}{5} x=\frac{-4\sqrt{2351}i+28}{5}
The equation is now solved.
x^{2}-11.2x+1536=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-11.2x+1536-1536=-1536
Subtract 1536 from both sides of the equation.
x^{2}-11.2x=-1536
Subtracting 1536 from itself leaves 0.
x^{2}-11.2x+\left(-5.6\right)^{2}=-1536+\left(-5.6\right)^{2}
Divide -11.2, the coefficient of the x term, by 2 to get -5.6. Then add the square of -5.6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-11.2x+31.36=-1536+31.36
Square -5.6 by squaring both the numerator and the denominator of the fraction.
x^{2}-11.2x+31.36=-1504.64
Add -1536 to 31.36.
\left(x-5.6\right)^{2}=-1504.64
Factor x^{2}-11.2x+31.36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5.6\right)^{2}}=\sqrt{-1504.64}
Take the square root of both sides of the equation.
x-5.6=\frac{4\sqrt{2351}i}{5} x-5.6=-\frac{4\sqrt{2351}i}{5}
Simplify.
x=\frac{28+4\sqrt{2351}i}{5} x=\frac{-4\sqrt{2351}i+28}{5}
Add 5.6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}