Solve for x (complex solution)
x=5+\sqrt{14}i\approx 5+3.741657387i
x=-\sqrt{14}i+5\approx 5-3.741657387i
Graph
Share
Copied to clipboard
x^{2}-10x=-39
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-10x-\left(-39\right)=-39-\left(-39\right)
Add 39 to both sides of the equation.
x^{2}-10x-\left(-39\right)=0
Subtracting -39 from itself leaves 0.
x^{2}-10x+39=0
Subtract -39 from 0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 39}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 39}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-156}}{2}
Multiply -4 times 39.
x=\frac{-\left(-10\right)±\sqrt{-56}}{2}
Add 100 to -156.
x=\frac{-\left(-10\right)±2\sqrt{14}i}{2}
Take the square root of -56.
x=\frac{10±2\sqrt{14}i}{2}
The opposite of -10 is 10.
x=\frac{10+2\sqrt{14}i}{2}
Now solve the equation x=\frac{10±2\sqrt{14}i}{2} when ± is plus. Add 10 to 2i\sqrt{14}.
x=5+\sqrt{14}i
Divide 10+2i\sqrt{14} by 2.
x=\frac{-2\sqrt{14}i+10}{2}
Now solve the equation x=\frac{10±2\sqrt{14}i}{2} when ± is minus. Subtract 2i\sqrt{14} from 10.
x=-\sqrt{14}i+5
Divide 10-2i\sqrt{14} by 2.
x=5+\sqrt{14}i x=-\sqrt{14}i+5
The equation is now solved.
x^{2}-10x=-39
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-10x+\left(-5\right)^{2}=-39+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-39+25
Square -5.
x^{2}-10x+25=-14
Add -39 to 25.
\left(x-5\right)^{2}=-14
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-14}
Take the square root of both sides of the equation.
x-5=\sqrt{14}i x-5=-\sqrt{14}i
Simplify.
x=5+\sqrt{14}i x=-\sqrt{14}i+5
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}