Solve for x
x = \frac{\sqrt{193} + 1}{8} \approx 1.861555499
x=\frac{1-\sqrt{193}}{8}\approx -1.611555499
Graph
Share
Copied to clipboard
x^{2}-0.25x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0.25\right)±\sqrt{\left(-0.25\right)^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -0.25 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.25\right)±\sqrt{0.0625-4\left(-3\right)}}{2}
Square -0.25 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.25\right)±\sqrt{0.0625+12}}{2}
Multiply -4 times -3.
x=\frac{-\left(-0.25\right)±\sqrt{12.0625}}{2}
Add 0.0625 to 12.
x=\frac{-\left(-0.25\right)±\frac{\sqrt{193}}{4}}{2}
Take the square root of 12.0625.
x=\frac{0.25±\frac{\sqrt{193}}{4}}{2}
The opposite of -0.25 is 0.25.
x=\frac{\sqrt{193}+1}{2\times 4}
Now solve the equation x=\frac{0.25±\frac{\sqrt{193}}{4}}{2} when ± is plus. Add 0.25 to \frac{\sqrt{193}}{4}.
x=\frac{\sqrt{193}+1}{8}
Divide \frac{1+\sqrt{193}}{4} by 2.
x=\frac{1-\sqrt{193}}{2\times 4}
Now solve the equation x=\frac{0.25±\frac{\sqrt{193}}{4}}{2} when ± is minus. Subtract \frac{\sqrt{193}}{4} from 0.25.
x=\frac{1-\sqrt{193}}{8}
Divide \frac{1-\sqrt{193}}{4} by 2.
x=\frac{\sqrt{193}+1}{8} x=\frac{1-\sqrt{193}}{8}
The equation is now solved.
x^{2}-0.25x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-0.25x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
x^{2}-0.25x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
x^{2}-0.25x=3
Subtract -3 from 0.
x^{2}-0.25x+\left(-0.125\right)^{2}=3+\left(-0.125\right)^{2}
Divide -0.25, the coefficient of the x term, by 2 to get -0.125. Then add the square of -0.125 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0.25x+0.015625=3+0.015625
Square -0.125 by squaring both the numerator and the denominator of the fraction.
x^{2}-0.25x+0.015625=3.015625
Add 3 to 0.015625.
\left(x-0.125\right)^{2}=3.015625
Factor x^{2}-0.25x+0.015625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.125\right)^{2}}=\sqrt{3.015625}
Take the square root of both sides of the equation.
x-0.125=\frac{\sqrt{193}}{8} x-0.125=-\frac{\sqrt{193}}{8}
Simplify.
x=\frac{\sqrt{193}+1}{8} x=\frac{1-\sqrt{193}}{8}
Add 0.125 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}