Solve for x (complex solution)
x=\sqrt{97}-9\approx 0.848857802
x=-\left(\sqrt{97}+9\right)\approx -18.848857802
Solve for x
x=\sqrt{97}-9\approx 0.848857802
x=-\sqrt{97}-9\approx -18.848857802
Graph
Share
Copied to clipboard
x^{2}-0+20x-2x-16=0
Anything times zero gives zero.
x^{2}-0+18x-16=0
Combine 20x and -2x to get 18x.
x^{2}+18x-16=0
Reorder the terms.
x=\frac{-18±\sqrt{18^{2}-4\left(-16\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 18 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-16\right)}}{2}
Square 18.
x=\frac{-18±\sqrt{324+64}}{2}
Multiply -4 times -16.
x=\frac{-18±\sqrt{388}}{2}
Add 324 to 64.
x=\frac{-18±2\sqrt{97}}{2}
Take the square root of 388.
x=\frac{2\sqrt{97}-18}{2}
Now solve the equation x=\frac{-18±2\sqrt{97}}{2} when ± is plus. Add -18 to 2\sqrt{97}.
x=\sqrt{97}-9
Divide -18+2\sqrt{97} by 2.
x=\frac{-2\sqrt{97}-18}{2}
Now solve the equation x=\frac{-18±2\sqrt{97}}{2} when ± is minus. Subtract 2\sqrt{97} from -18.
x=-\sqrt{97}-9
Divide -18-2\sqrt{97} by 2.
x=\sqrt{97}-9 x=-\sqrt{97}-9
The equation is now solved.
x^{2}-0+20x-2x-16=0
Anything times zero gives zero.
x^{2}-0+18x-16=0
Combine 20x and -2x to get 18x.
x^{2}-0+18x=16
Add 16 to both sides. Anything plus zero gives itself.
x^{2}+18x=16
Reorder the terms.
x^{2}+18x+9^{2}=16+9^{2}
Divide 18, the coefficient of the x term, by 2 to get 9. Then add the square of 9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+18x+81=16+81
Square 9.
x^{2}+18x+81=97
Add 16 to 81.
\left(x+9\right)^{2}=97
Factor x^{2}+18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{97}
Take the square root of both sides of the equation.
x+9=\sqrt{97} x+9=-\sqrt{97}
Simplify.
x=\sqrt{97}-9 x=-\sqrt{97}-9
Subtract 9 from both sides of the equation.
x^{2}-0+20x-2x-16=0
Anything times zero gives zero.
x^{2}-0+18x-16=0
Combine 20x and -2x to get 18x.
x^{2}+18x-16=0
Reorder the terms.
x=\frac{-18±\sqrt{18^{2}-4\left(-16\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 18 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-16\right)}}{2}
Square 18.
x=\frac{-18±\sqrt{324+64}}{2}
Multiply -4 times -16.
x=\frac{-18±\sqrt{388}}{2}
Add 324 to 64.
x=\frac{-18±2\sqrt{97}}{2}
Take the square root of 388.
x=\frac{2\sqrt{97}-18}{2}
Now solve the equation x=\frac{-18±2\sqrt{97}}{2} when ± is plus. Add -18 to 2\sqrt{97}.
x=\sqrt{97}-9
Divide -18+2\sqrt{97} by 2.
x=\frac{-2\sqrt{97}-18}{2}
Now solve the equation x=\frac{-18±2\sqrt{97}}{2} when ± is minus. Subtract 2\sqrt{97} from -18.
x=-\sqrt{97}-9
Divide -18-2\sqrt{97} by 2.
x=\sqrt{97}-9 x=-\sqrt{97}-9
The equation is now solved.
x^{2}-0+20x-2x-16=0
Anything times zero gives zero.
x^{2}-0+18x-16=0
Combine 20x and -2x to get 18x.
x^{2}-0+18x=16
Add 16 to both sides. Anything plus zero gives itself.
x^{2}+18x=16
Reorder the terms.
x^{2}+18x+9^{2}=16+9^{2}
Divide 18, the coefficient of the x term, by 2 to get 9. Then add the square of 9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+18x+81=16+81
Square 9.
x^{2}+18x+81=97
Add 16 to 81.
\left(x+9\right)^{2}=97
Factor x^{2}+18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9\right)^{2}}=\sqrt{97}
Take the square root of both sides of the equation.
x+9=\sqrt{97} x+9=-\sqrt{97}
Simplify.
x=\sqrt{97}-9 x=-\sqrt{97}-9
Subtract 9 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}