Solve for a
a=-\frac{x^{2}-2x-6}{5-x}
x\neq 5
Solve for x (complex solution)
x=\frac{\sqrt{\left(a-14\right)\left(a-2\right)}+a+2}{2}
x=\frac{-\sqrt{\left(a-14\right)\left(a-2\right)}+a+2}{2}
Solve for x
x=\frac{\sqrt{\left(a-14\right)\left(a-2\right)}+a+2}{2}
x=\frac{-\sqrt{\left(a-14\right)\left(a-2\right)}+a+2}{2}\text{, }a\leq 2\text{ or }a\geq 14
Graph
Share
Copied to clipboard
x^{2}-\left(ax+2x\right)+5a-6=0
Use the distributive property to multiply a+2 by x.
x^{2}-ax-2x+5a-6=0
To find the opposite of ax+2x, find the opposite of each term.
-ax-2x+5a-6=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-ax+5a-6=-x^{2}+2x
Add 2x to both sides.
-ax+5a=-x^{2}+2x+6
Add 6 to both sides.
\left(-x+5\right)a=-x^{2}+2x+6
Combine all terms containing a.
\left(5-x\right)a=6+2x-x^{2}
The equation is in standard form.
\frac{\left(5-x\right)a}{5-x}=\frac{6+2x-x^{2}}{5-x}
Divide both sides by -x+5.
a=\frac{6+2x-x^{2}}{5-x}
Dividing by -x+5 undoes the multiplication by -x+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}