Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\left(25-20x+4x^{2}\right)=3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
x^{2}-25+20x-4x^{2}=3
To find the opposite of 25-20x+4x^{2}, find the opposite of each term.
-3x^{2}-25+20x=3
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-25+20x-3=0
Subtract 3 from both sides.
-3x^{2}-28+20x=0
Subtract 3 from -25 to get -28.
-3x^{2}+20x-28=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=20 ab=-3\left(-28\right)=84
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-28. To find a and b, set up a system to be solved.
1,84 2,42 3,28 4,21 6,14 7,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 84.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
Calculate the sum for each pair.
a=14 b=6
The solution is the pair that gives sum 20.
\left(-3x^{2}+14x\right)+\left(6x-28\right)
Rewrite -3x^{2}+20x-28 as \left(-3x^{2}+14x\right)+\left(6x-28\right).
-x\left(3x-14\right)+2\left(3x-14\right)
Factor out -x in the first and 2 in the second group.
\left(3x-14\right)\left(-x+2\right)
Factor out common term 3x-14 by using distributive property.
x=\frac{14}{3} x=2
To find equation solutions, solve 3x-14=0 and -x+2=0.
x^{2}-\left(25-20x+4x^{2}\right)=3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
x^{2}-25+20x-4x^{2}=3
To find the opposite of 25-20x+4x^{2}, find the opposite of each term.
-3x^{2}-25+20x=3
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-25+20x-3=0
Subtract 3 from both sides.
-3x^{2}-28+20x=0
Subtract 3 from -25 to get -28.
-3x^{2}+20x-28=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-3\right)\left(-28\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 20 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-3\right)\left(-28\right)}}{2\left(-3\right)}
Square 20.
x=\frac{-20±\sqrt{400+12\left(-28\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-20±\sqrt{400-336}}{2\left(-3\right)}
Multiply 12 times -28.
x=\frac{-20±\sqrt{64}}{2\left(-3\right)}
Add 400 to -336.
x=\frac{-20±8}{2\left(-3\right)}
Take the square root of 64.
x=\frac{-20±8}{-6}
Multiply 2 times -3.
x=-\frac{12}{-6}
Now solve the equation x=\frac{-20±8}{-6} when ± is plus. Add -20 to 8.
x=2
Divide -12 by -6.
x=-\frac{28}{-6}
Now solve the equation x=\frac{-20±8}{-6} when ± is minus. Subtract 8 from -20.
x=\frac{14}{3}
Reduce the fraction \frac{-28}{-6} to lowest terms by extracting and canceling out 2.
x=2 x=\frac{14}{3}
The equation is now solved.
x^{2}-\left(25-20x+4x^{2}\right)=3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
x^{2}-25+20x-4x^{2}=3
To find the opposite of 25-20x+4x^{2}, find the opposite of each term.
-3x^{2}-25+20x=3
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+20x=3+25
Add 25 to both sides.
-3x^{2}+20x=28
Add 3 and 25 to get 28.
\frac{-3x^{2}+20x}{-3}=\frac{28}{-3}
Divide both sides by -3.
x^{2}+\frac{20}{-3}x=\frac{28}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{20}{3}x=\frac{28}{-3}
Divide 20 by -3.
x^{2}-\frac{20}{3}x=-\frac{28}{3}
Divide 28 by -3.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=-\frac{28}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=-\frac{28}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{16}{9}
Add -\frac{28}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{3}\right)^{2}=\frac{16}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{4}{3} x-\frac{10}{3}=-\frac{4}{3}
Simplify.
x=\frac{14}{3} x=2
Add \frac{10}{3} to both sides of the equation.