Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\left(9x^{2}-12x+4\right)=5-\left(x-5\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
x^{2}-9x^{2}+12x-4=5-\left(x-5\right)^{2}
To find the opposite of 9x^{2}-12x+4, find the opposite of each term.
-8x^{2}+12x-4=5-\left(x-5\right)^{2}
Combine x^{2} and -9x^{2} to get -8x^{2}.
-8x^{2}+12x-4=5-\left(x^{2}-10x+25\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
-8x^{2}+12x-4=5-x^{2}+10x-25
To find the opposite of x^{2}-10x+25, find the opposite of each term.
-8x^{2}+12x-4=-20-x^{2}+10x
Subtract 25 from 5 to get -20.
-8x^{2}+12x-4-\left(-20\right)=-x^{2}+10x
Subtract -20 from both sides.
-8x^{2}+12x-4+20=-x^{2}+10x
The opposite of -20 is 20.
-8x^{2}+12x-4+20+x^{2}=10x
Add x^{2} to both sides.
-8x^{2}+12x+16+x^{2}=10x
Add -4 and 20 to get 16.
-7x^{2}+12x+16=10x
Combine -8x^{2} and x^{2} to get -7x^{2}.
-7x^{2}+12x+16-10x=0
Subtract 10x from both sides.
-7x^{2}+2x+16=0
Combine 12x and -10x to get 2x.
x=\frac{-2±\sqrt{2^{2}-4\left(-7\right)\times 16}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 2 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-7\right)\times 16}}{2\left(-7\right)}
Square 2.
x=\frac{-2±\sqrt{4+28\times 16}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-2±\sqrt{4+448}}{2\left(-7\right)}
Multiply 28 times 16.
x=\frac{-2±\sqrt{452}}{2\left(-7\right)}
Add 4 to 448.
x=\frac{-2±2\sqrt{113}}{2\left(-7\right)}
Take the square root of 452.
x=\frac{-2±2\sqrt{113}}{-14}
Multiply 2 times -7.
x=\frac{2\sqrt{113}-2}{-14}
Now solve the equation x=\frac{-2±2\sqrt{113}}{-14} when ± is plus. Add -2 to 2\sqrt{113}.
x=\frac{1-\sqrt{113}}{7}
Divide -2+2\sqrt{113} by -14.
x=\frac{-2\sqrt{113}-2}{-14}
Now solve the equation x=\frac{-2±2\sqrt{113}}{-14} when ± is minus. Subtract 2\sqrt{113} from -2.
x=\frac{\sqrt{113}+1}{7}
Divide -2-2\sqrt{113} by -14.
x=\frac{1-\sqrt{113}}{7} x=\frac{\sqrt{113}+1}{7}
The equation is now solved.
x^{2}-\left(9x^{2}-12x+4\right)=5-\left(x-5\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
x^{2}-9x^{2}+12x-4=5-\left(x-5\right)^{2}
To find the opposite of 9x^{2}-12x+4, find the opposite of each term.
-8x^{2}+12x-4=5-\left(x-5\right)^{2}
Combine x^{2} and -9x^{2} to get -8x^{2}.
-8x^{2}+12x-4=5-\left(x^{2}-10x+25\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
-8x^{2}+12x-4=5-x^{2}+10x-25
To find the opposite of x^{2}-10x+25, find the opposite of each term.
-8x^{2}+12x-4=-20-x^{2}+10x
Subtract 25 from 5 to get -20.
-8x^{2}+12x-4+x^{2}=-20+10x
Add x^{2} to both sides.
-7x^{2}+12x-4=-20+10x
Combine -8x^{2} and x^{2} to get -7x^{2}.
-7x^{2}+12x-4-10x=-20
Subtract 10x from both sides.
-7x^{2}+2x-4=-20
Combine 12x and -10x to get 2x.
-7x^{2}+2x=-20+4
Add 4 to both sides.
-7x^{2}+2x=-16
Add -20 and 4 to get -16.
\frac{-7x^{2}+2x}{-7}=-\frac{16}{-7}
Divide both sides by -7.
x^{2}+\frac{2}{-7}x=-\frac{16}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{2}{7}x=-\frac{16}{-7}
Divide 2 by -7.
x^{2}-\frac{2}{7}x=\frac{16}{7}
Divide -16 by -7.
x^{2}-\frac{2}{7}x+\left(-\frac{1}{7}\right)^{2}=\frac{16}{7}+\left(-\frac{1}{7}\right)^{2}
Divide -\frac{2}{7}, the coefficient of the x term, by 2 to get -\frac{1}{7}. Then add the square of -\frac{1}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{16}{7}+\frac{1}{49}
Square -\frac{1}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{113}{49}
Add \frac{16}{7} to \frac{1}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{7}\right)^{2}=\frac{113}{49}
Factor x^{2}-\frac{2}{7}x+\frac{1}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{7}\right)^{2}}=\sqrt{\frac{113}{49}}
Take the square root of both sides of the equation.
x-\frac{1}{7}=\frac{\sqrt{113}}{7} x-\frac{1}{7}=-\frac{\sqrt{113}}{7}
Simplify.
x=\frac{\sqrt{113}+1}{7} x=\frac{1-\sqrt{113}}{7}
Add \frac{1}{7} to both sides of the equation.