Solve for m
m=\frac{x}{2}+\frac{1}{2}+\frac{1}{x}
x\neq 0
Solve for x (complex solution)
x=\frac{\sqrt{4m^{2}-4m-7}}{2}+m-\frac{1}{2}
x=-\frac{\sqrt{4m^{2}-4m-7}}{2}+m-\frac{1}{2}
Solve for x
x=\frac{\sqrt{4m^{2}-4m-7}}{2}+m-\frac{1}{2}
x=-\frac{\sqrt{4m^{2}-4m-7}}{2}+m-\frac{1}{2}\text{, }m\geq \sqrt{2}+\frac{1}{2}\text{ or }m\leq \frac{1}{2}-\sqrt{2}
Graph
Share
Copied to clipboard
x^{2}-\left(2mx-x\right)+2=0
Use the distributive property to multiply 2m-1 by x.
x^{2}-2mx+x+2=0
To find the opposite of 2mx-x, find the opposite of each term.
-2mx+x+2=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2mx+2=-x^{2}-x
Subtract x from both sides.
-2mx=-x^{2}-x-2
Subtract 2 from both sides.
\left(-2x\right)m=-x^{2}-x-2
The equation is in standard form.
\frac{\left(-2x\right)m}{-2x}=\frac{-x^{2}-x-2}{-2x}
Divide both sides by -2x.
m=\frac{-x^{2}-x-2}{-2x}
Dividing by -2x undoes the multiplication by -2x.
m=\frac{x}{2}+\frac{1}{2}+\frac{1}{x}
Divide -x^{2}-x-2 by -2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}