Solve for x
x = \frac{24}{5} = 4\frac{4}{5} = 4.8
Graph
Share
Copied to clipboard
x^{2}-\left(9-6x+x^{2}\right)-5x+4\left(-3+x\right)=3
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3+x\right)^{2}.
x^{2}-9+6x-x^{2}-5x+4\left(-3+x\right)=3
To find the opposite of 9-6x+x^{2}, find the opposite of each term.
-9+6x-5x+4\left(-3+x\right)=3
Combine x^{2} and -x^{2} to get 0.
-9+x+4\left(-3+x\right)=3
Combine 6x and -5x to get x.
-9+x-12+4x=3
Use the distributive property to multiply 4 by -3+x.
-21+x+4x=3
Subtract 12 from -9 to get -21.
-21+5x=3
Combine x and 4x to get 5x.
5x=3+21
Add 21 to both sides.
5x=24
Add 3 and 21 to get 24.
x=\frac{24}{5}
Divide both sides by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}