Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

256x^{2}-81=0
Multiply both sides by 256.
\left(16x-9\right)\left(16x+9\right)=0
Consider 256x^{2}-81. Rewrite 256x^{2}-81 as \left(16x\right)^{2}-9^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{9}{16} x=-\frac{9}{16}
To find equation solutions, solve 16x-9=0 and 16x+9=0.
x^{2}=\frac{81}{256}
Add \frac{81}{256} to both sides. Anything plus zero gives itself.
x=\frac{9}{16} x=-\frac{9}{16}
Take the square root of both sides of the equation.
x^{2}-\frac{81}{256}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{81}{256}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{81}{256} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{81}{256}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{81}{64}}}{2}
Multiply -4 times -\frac{81}{256}.
x=\frac{0±\frac{9}{8}}{2}
Take the square root of \frac{81}{64}.
x=\frac{9}{16}
Now solve the equation x=\frac{0±\frac{9}{8}}{2} when ± is plus.
x=-\frac{9}{16}
Now solve the equation x=\frac{0±\frac{9}{8}}{2} when ± is minus.
x=\frac{9}{16} x=-\frac{9}{16}
The equation is now solved.