Solve for x
x=\frac{9}{16}=0.5625
x=-\frac{9}{16}=-0.5625
Graph
Share
Copied to clipboard
256x^{2}-81=0
Multiply both sides by 256.
\left(16x-9\right)\left(16x+9\right)=0
Consider 256x^{2}-81. Rewrite 256x^{2}-81 as \left(16x\right)^{2}-9^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{9}{16} x=-\frac{9}{16}
To find equation solutions, solve 16x-9=0 and 16x+9=0.
x^{2}=\frac{81}{256}
Add \frac{81}{256} to both sides. Anything plus zero gives itself.
x=\frac{9}{16} x=-\frac{9}{16}
Take the square root of both sides of the equation.
x^{2}-\frac{81}{256}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{81}{256}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{81}{256} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{81}{256}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{81}{64}}}{2}
Multiply -4 times -\frac{81}{256}.
x=\frac{0±\frac{9}{8}}{2}
Take the square root of \frac{81}{64}.
x=\frac{9}{16}
Now solve the equation x=\frac{0±\frac{9}{8}}{2} when ± is plus.
x=-\frac{9}{16}
Now solve the equation x=\frac{0±\frac{9}{8}}{2} when ± is minus.
x=\frac{9}{16} x=-\frac{9}{16}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}