Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{8}{3}x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\left(-\frac{8}{3}\right)^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{8}{3} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\frac{64}{9}-4\left(-1\right)}}{2}
Square -\frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\frac{64}{9}+4}}{2}
Multiply -4 times -1.
x=\frac{-\left(-\frac{8}{3}\right)±\sqrt{\frac{100}{9}}}{2}
Add \frac{64}{9} to 4.
x=\frac{-\left(-\frac{8}{3}\right)±\frac{10}{3}}{2}
Take the square root of \frac{100}{9}.
x=\frac{\frac{8}{3}±\frac{10}{3}}{2}
The opposite of -\frac{8}{3} is \frac{8}{3}.
x=\frac{6}{2}
Now solve the equation x=\frac{\frac{8}{3}±\frac{10}{3}}{2} when ± is plus. Add \frac{8}{3} to \frac{10}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=3
Divide 6 by 2.
x=-\frac{\frac{2}{3}}{2}
Now solve the equation x=\frac{\frac{8}{3}±\frac{10}{3}}{2} when ± is minus. Subtract \frac{10}{3} from \frac{8}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{1}{3}
Divide -\frac{2}{3} by 2.
x=3 x=-\frac{1}{3}
The equation is now solved.
x^{2}-\frac{8}{3}x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{8}{3}x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
x^{2}-\frac{8}{3}x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
x^{2}-\frac{8}{3}x=1
Subtract -1 from 0.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=1+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=1+\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{25}{9}
Add 1 to \frac{16}{9}.
\left(x-\frac{4}{3}\right)^{2}=\frac{25}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{5}{3} x-\frac{4}{3}=-\frac{5}{3}
Simplify.
x=3 x=-\frac{1}{3}
Add \frac{4}{3} to both sides of the equation.