Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-5x^{4}-6=0
Multiply both sides of the equation by 2.
-5t^{2}+2t-6=0
Substitute t for x^{2}.
t=\frac{-2±\sqrt{2^{2}-4\left(-5\right)\left(-6\right)}}{-5\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -5 for a, 2 for b, and -6 for c in the quadratic formula.
t=\frac{-2±\sqrt{-116}}{-10}
Do the calculations.
t=\frac{-\sqrt{29}i+1}{5} t=\frac{1+\sqrt{29}i}{5}
Solve the equation t=\frac{-2±\sqrt{-116}}{-10} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{750}e^{-\frac{\arctan(\sqrt{29})i}{2}}}{5} x=\frac{\sqrt[4]{750}e^{\frac{-\arctan(\sqrt{29})i+2\pi i}{2}}}{5} x=\frac{\sqrt[4]{750}e^{\frac{\arctan(\sqrt{29})i+2\pi i}{2}}}{5} x=\frac{\sqrt[4]{750}e^{\frac{\arctan(\sqrt{29})i}{2}}}{5}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.