Solve for x
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
x=10
Graph
Share
Copied to clipboard
4x^{2}-45x+50=0
Multiply both sides of the equation by 4, the least common multiple of 4,2.
a+b=-45 ab=4\times 50=200
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+50. To find a and b, set up a system to be solved.
-1,-200 -2,-100 -4,-50 -5,-40 -8,-25 -10,-20
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 200.
-1-200=-201 -2-100=-102 -4-50=-54 -5-40=-45 -8-25=-33 -10-20=-30
Calculate the sum for each pair.
a=-40 b=-5
The solution is the pair that gives sum -45.
\left(4x^{2}-40x\right)+\left(-5x+50\right)
Rewrite 4x^{2}-45x+50 as \left(4x^{2}-40x\right)+\left(-5x+50\right).
4x\left(x-10\right)-5\left(x-10\right)
Factor out 4x in the first and -5 in the second group.
\left(x-10\right)\left(4x-5\right)
Factor out common term x-10 by using distributive property.
x=10 x=\frac{5}{4}
To find equation solutions, solve x-10=0 and 4x-5=0.
4x^{2}-45x+50=0
Multiply both sides of the equation by 4, the least common multiple of 4,2.
x=\frac{-\left(-45\right)±\sqrt{\left(-45\right)^{2}-4\times 4\times 50}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -45 for b, and 50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-45\right)±\sqrt{2025-4\times 4\times 50}}{2\times 4}
Square -45.
x=\frac{-\left(-45\right)±\sqrt{2025-16\times 50}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-45\right)±\sqrt{2025-800}}{2\times 4}
Multiply -16 times 50.
x=\frac{-\left(-45\right)±\sqrt{1225}}{2\times 4}
Add 2025 to -800.
x=\frac{-\left(-45\right)±35}{2\times 4}
Take the square root of 1225.
x=\frac{45±35}{2\times 4}
The opposite of -45 is 45.
x=\frac{45±35}{8}
Multiply 2 times 4.
x=\frac{80}{8}
Now solve the equation x=\frac{45±35}{8} when ± is plus. Add 45 to 35.
x=10
Divide 80 by 8.
x=\frac{10}{8}
Now solve the equation x=\frac{45±35}{8} when ± is minus. Subtract 35 from 45.
x=\frac{5}{4}
Reduce the fraction \frac{10}{8} to lowest terms by extracting and canceling out 2.
x=10 x=\frac{5}{4}
The equation is now solved.
4x^{2}-45x+50=0
Multiply both sides of the equation by 4, the least common multiple of 4,2.
4x^{2}-45x=-50
Subtract 50 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}-45x}{4}=-\frac{50}{4}
Divide both sides by 4.
x^{2}-\frac{45}{4}x=-\frac{50}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{45}{4}x=-\frac{25}{2}
Reduce the fraction \frac{-50}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{45}{4}x+\left(-\frac{45}{8}\right)^{2}=-\frac{25}{2}+\left(-\frac{45}{8}\right)^{2}
Divide -\frac{45}{4}, the coefficient of the x term, by 2 to get -\frac{45}{8}. Then add the square of -\frac{45}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{45}{4}x+\frac{2025}{64}=-\frac{25}{2}+\frac{2025}{64}
Square -\frac{45}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{45}{4}x+\frac{2025}{64}=\frac{1225}{64}
Add -\frac{25}{2} to \frac{2025}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{45}{8}\right)^{2}=\frac{1225}{64}
Factor x^{2}-\frac{45}{4}x+\frac{2025}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{45}{8}\right)^{2}}=\sqrt{\frac{1225}{64}}
Take the square root of both sides of the equation.
x-\frac{45}{8}=\frac{35}{8} x-\frac{45}{8}=-\frac{35}{8}
Simplify.
x=10 x=\frac{5}{4}
Add \frac{45}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}