Factor
\frac{\left(x-12\right)\left(2x-3\right)}{2}
Evaluate
x^{2}-\frac{27x}{2}+18
Graph
Share
Copied to clipboard
\frac{2x^{2}-27x+36}{2}
Factor out \frac{1}{2}.
a+b=-27 ab=2\times 36=72
Consider 2x^{2}-27x+36. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx+36. To find a and b, set up a system to be solved.
-1,-72 -2,-36 -3,-24 -4,-18 -6,-12 -8,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 72.
-1-72=-73 -2-36=-38 -3-24=-27 -4-18=-22 -6-12=-18 -8-9=-17
Calculate the sum for each pair.
a=-24 b=-3
The solution is the pair that gives sum -27.
\left(2x^{2}-24x\right)+\left(-3x+36\right)
Rewrite 2x^{2}-27x+36 as \left(2x^{2}-24x\right)+\left(-3x+36\right).
2x\left(x-12\right)-3\left(x-12\right)
Factor out 2x in the first and -3 in the second group.
\left(x-12\right)\left(2x-3\right)
Factor out common term x-12 by using distributive property.
\frac{\left(x-12\right)\left(2x-3\right)}{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}