Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{27}{13}x-\frac{120}{169}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{27}{13}\right)±\sqrt{\left(-\frac{27}{13}\right)^{2}-4\left(-\frac{120}{169}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{27}{13} for b, and -\frac{120}{169} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{27}{13}\right)±\sqrt{\frac{729}{169}-4\left(-\frac{120}{169}\right)}}{2}
Square -\frac{27}{13} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{27}{13}\right)±\sqrt{\frac{729+480}{169}}}{2}
Multiply -4 times -\frac{120}{169}.
x=\frac{-\left(-\frac{27}{13}\right)±\sqrt{\frac{93}{13}}}{2}
Add \frac{729}{169} to \frac{480}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{27}{13}\right)±\frac{\sqrt{1209}}{13}}{2}
Take the square root of \frac{93}{13}.
x=\frac{\frac{27}{13}±\frac{\sqrt{1209}}{13}}{2}
The opposite of -\frac{27}{13} is \frac{27}{13}.
x=\frac{\sqrt{1209}+27}{2\times 13}
Now solve the equation x=\frac{\frac{27}{13}±\frac{\sqrt{1209}}{13}}{2} when ± is plus. Add \frac{27}{13} to \frac{\sqrt{1209}}{13}.
x=\frac{\sqrt{1209}+27}{26}
Divide \frac{27+\sqrt{1209}}{13} by 2.
x=\frac{27-\sqrt{1209}}{2\times 13}
Now solve the equation x=\frac{\frac{27}{13}±\frac{\sqrt{1209}}{13}}{2} when ± is minus. Subtract \frac{\sqrt{1209}}{13} from \frac{27}{13}.
x=\frac{27-\sqrt{1209}}{26}
Divide \frac{27-\sqrt{1209}}{13} by 2.
x=\frac{\sqrt{1209}+27}{26} x=\frac{27-\sqrt{1209}}{26}
The equation is now solved.
x^{2}-\frac{27}{13}x-\frac{120}{169}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{27}{13}x-\frac{120}{169}-\left(-\frac{120}{169}\right)=-\left(-\frac{120}{169}\right)
Add \frac{120}{169} to both sides of the equation.
x^{2}-\frac{27}{13}x=-\left(-\frac{120}{169}\right)
Subtracting -\frac{120}{169} from itself leaves 0.
x^{2}-\frac{27}{13}x=\frac{120}{169}
Subtract -\frac{120}{169} from 0.
x^{2}-\frac{27}{13}x+\left(-\frac{27}{26}\right)^{2}=\frac{120}{169}+\left(-\frac{27}{26}\right)^{2}
Divide -\frac{27}{13}, the coefficient of the x term, by 2 to get -\frac{27}{26}. Then add the square of -\frac{27}{26} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{27}{13}x+\frac{729}{676}=\frac{120}{169}+\frac{729}{676}
Square -\frac{27}{26} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{27}{13}x+\frac{729}{676}=\frac{93}{52}
Add \frac{120}{169} to \frac{729}{676} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{27}{26}\right)^{2}=\frac{93}{52}
Factor x^{2}-\frac{27}{13}x+\frac{729}{676}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{27}{26}\right)^{2}}=\sqrt{\frac{93}{52}}
Take the square root of both sides of the equation.
x-\frac{27}{26}=\frac{\sqrt{1209}}{26} x-\frac{27}{26}=-\frac{\sqrt{1209}}{26}
Simplify.
x=\frac{\sqrt{1209}+27}{26} x=\frac{27-\sqrt{1209}}{26}
Add \frac{27}{26} to both sides of the equation.