Solve for x (complex solution)
x=-\frac{\sqrt{165}i}{11}\approx -0-1.167748416i
x=\frac{\sqrt{165}i}{11}\approx 1.167748416i
Graph
Share
Copied to clipboard
3\left(x^{2}-\frac{25x}{3}x\right)-30=0
Multiply both sides of the equation by 3.
3\left(x^{2}-\frac{25xx}{3}\right)-30=0
Express \frac{25x}{3}x as a single fraction.
3\left(x^{2}-\frac{25x^{2}}{3}\right)-30=0
Multiply x and x to get x^{2}.
3x^{2}+3\left(-\frac{25x^{2}}{3}\right)-30=0
Use the distributive property to multiply 3 by x^{2}-\frac{25x^{2}}{3}.
3x^{2}+\frac{-3\times 25x^{2}}{3}-30=0
Express 3\left(-\frac{25x^{2}}{3}\right) as a single fraction.
3x^{2}-25x^{2}-30=0
Cancel out 3 and 3.
-22x^{2}-30=0
Combine 3x^{2} and -25x^{2} to get -22x^{2}.
-22x^{2}=30
Add 30 to both sides. Anything plus zero gives itself.
x^{2}=\frac{30}{-22}
Divide both sides by -22.
x^{2}=-\frac{15}{11}
Reduce the fraction \frac{30}{-22} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{165}i}{11} x=-\frac{\sqrt{165}i}{11}
The equation is now solved.
3\left(x^{2}-\frac{25x}{3}x\right)-30=0
Multiply both sides of the equation by 3.
3\left(x^{2}-\frac{25xx}{3}\right)-30=0
Express \frac{25x}{3}x as a single fraction.
3\left(x^{2}-\frac{25x^{2}}{3}\right)-30=0
Multiply x and x to get x^{2}.
3x^{2}+3\left(-\frac{25x^{2}}{3}\right)-30=0
Use the distributive property to multiply 3 by x^{2}-\frac{25x^{2}}{3}.
3x^{2}+\frac{-3\times 25x^{2}}{3}-30=0
Express 3\left(-\frac{25x^{2}}{3}\right) as a single fraction.
3x^{2}-25x^{2}-30=0
Cancel out 3 and 3.
-22x^{2}-30=0
Combine 3x^{2} and -25x^{2} to get -22x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-22\right)\left(-30\right)}}{2\left(-22\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -22 for a, 0 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-22\right)\left(-30\right)}}{2\left(-22\right)}
Square 0.
x=\frac{0±\sqrt{88\left(-30\right)}}{2\left(-22\right)}
Multiply -4 times -22.
x=\frac{0±\sqrt{-2640}}{2\left(-22\right)}
Multiply 88 times -30.
x=\frac{0±4\sqrt{165}i}{2\left(-22\right)}
Take the square root of -2640.
x=\frac{0±4\sqrt{165}i}{-44}
Multiply 2 times -22.
x=-\frac{\sqrt{165}i}{11}
Now solve the equation x=\frac{0±4\sqrt{165}i}{-44} when ± is plus.
x=\frac{\sqrt{165}i}{11}
Now solve the equation x=\frac{0±4\sqrt{165}i}{-44} when ± is minus.
x=-\frac{\sqrt{165}i}{11} x=\frac{\sqrt{165}i}{11}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}