Solve for x
x=-\frac{3}{5}=-0.6
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
x^{2}-\frac{16}{15}x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{16}{15}\right)±\sqrt{\left(-\frac{16}{15}\right)^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{16}{15} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{16}{15}\right)±\sqrt{\frac{256}{225}-4\left(-1\right)}}{2}
Square -\frac{16}{15} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{16}{15}\right)±\sqrt{\frac{256}{225}+4}}{2}
Multiply -4 times -1.
x=\frac{-\left(-\frac{16}{15}\right)±\sqrt{\frac{1156}{225}}}{2}
Add \frac{256}{225} to 4.
x=\frac{-\left(-\frac{16}{15}\right)±\frac{34}{15}}{2}
Take the square root of \frac{1156}{225}.
x=\frac{\frac{16}{15}±\frac{34}{15}}{2}
The opposite of -\frac{16}{15} is \frac{16}{15}.
x=\frac{\frac{10}{3}}{2}
Now solve the equation x=\frac{\frac{16}{15}±\frac{34}{15}}{2} when ± is plus. Add \frac{16}{15} to \frac{34}{15} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{5}{3}
Divide \frac{10}{3} by 2.
x=-\frac{\frac{6}{5}}{2}
Now solve the equation x=\frac{\frac{16}{15}±\frac{34}{15}}{2} when ± is minus. Subtract \frac{34}{15} from \frac{16}{15} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{3}{5}
Divide -\frac{6}{5} by 2.
x=\frac{5}{3} x=-\frac{3}{5}
The equation is now solved.
x^{2}-\frac{16}{15}x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{16}{15}x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
x^{2}-\frac{16}{15}x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
x^{2}-\frac{16}{15}x=1
Subtract -1 from 0.
x^{2}-\frac{16}{15}x+\left(-\frac{8}{15}\right)^{2}=1+\left(-\frac{8}{15}\right)^{2}
Divide -\frac{16}{15}, the coefficient of the x term, by 2 to get -\frac{8}{15}. Then add the square of -\frac{8}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{15}x+\frac{64}{225}=1+\frac{64}{225}
Square -\frac{8}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{15}x+\frac{64}{225}=\frac{289}{225}
Add 1 to \frac{64}{225}.
\left(x-\frac{8}{15}\right)^{2}=\frac{289}{225}
Factor x^{2}-\frac{16}{15}x+\frac{64}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{15}\right)^{2}}=\sqrt{\frac{289}{225}}
Take the square root of both sides of the equation.
x-\frac{8}{15}=\frac{17}{15} x-\frac{8}{15}=-\frac{17}{15}
Simplify.
x=\frac{5}{3} x=-\frac{3}{5}
Add \frac{8}{15} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}