Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{1}{4}-2x=0
Subtract 2x from both sides.
x^{2}-2x-\frac{1}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-\frac{1}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -\frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-\frac{1}{4}\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+1}}{2}
Multiply -4 times -\frac{1}{4}.
x=\frac{-\left(-2\right)±\sqrt{5}}{2}
Add 4 to 1.
x=\frac{2±\sqrt{5}}{2}
The opposite of -2 is 2.
x=\frac{\sqrt{5}+2}{2}
Now solve the equation x=\frac{2±\sqrt{5}}{2} when ± is plus. Add 2 to \sqrt{5}.
x=\frac{\sqrt{5}}{2}+1
Divide 2+\sqrt{5} by 2.
x=\frac{2-\sqrt{5}}{2}
Now solve the equation x=\frac{2±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from 2.
x=-\frac{\sqrt{5}}{2}+1
Divide 2-\sqrt{5} by 2.
x=\frac{\sqrt{5}}{2}+1 x=-\frac{\sqrt{5}}{2}+1
The equation is now solved.
x^{2}-\frac{1}{4}-2x=0
Subtract 2x from both sides.
x^{2}-2x=\frac{1}{4}
Add \frac{1}{4} to both sides. Anything plus zero gives itself.
x^{2}-2x+1=\frac{1}{4}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{5}{4}
Add \frac{1}{4} to 1.
\left(x-1\right)^{2}=\frac{5}{4}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{5}}{2} x-1=-\frac{\sqrt{5}}{2}
Simplify.
x=\frac{\sqrt{5}}{2}+1 x=-\frac{\sqrt{5}}{2}+1
Add 1 to both sides of the equation.