Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{1}{3}x+\frac{2}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\left(-\frac{1}{3}\right)^{2}-4\times \frac{2}{3}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{1}{3} for b, and \frac{2}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}-4\times \frac{2}{3}}}{2}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}-\frac{8}{3}}}{2}
Multiply -4 times \frac{2}{3}.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{-\frac{23}{9}}}{2}
Add \frac{1}{9} to -\frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{1}{3}\right)±\frac{\sqrt{23}i}{3}}{2}
Take the square root of -\frac{23}{9}.
x=\frac{\frac{1}{3}±\frac{\sqrt{23}i}{3}}{2}
The opposite of -\frac{1}{3} is \frac{1}{3}.
x=\frac{1+\sqrt{23}i}{2\times 3}
Now solve the equation x=\frac{\frac{1}{3}±\frac{\sqrt{23}i}{3}}{2} when ± is plus. Add \frac{1}{3} to \frac{i\sqrt{23}}{3}.
x=\frac{1+\sqrt{23}i}{6}
Divide \frac{1+i\sqrt{23}}{3} by 2.
x=\frac{-\sqrt{23}i+1}{2\times 3}
Now solve the equation x=\frac{\frac{1}{3}±\frac{\sqrt{23}i}{3}}{2} when ± is minus. Subtract \frac{i\sqrt{23}}{3} from \frac{1}{3}.
x=\frac{-\sqrt{23}i+1}{6}
Divide \frac{1-i\sqrt{23}}{3} by 2.
x=\frac{1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+1}{6}
The equation is now solved.
x^{2}-\frac{1}{3}x+\frac{2}{3}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{1}{3}x+\frac{2}{3}-\frac{2}{3}=-\frac{2}{3}
Subtract \frac{2}{3} from both sides of the equation.
x^{2}-\frac{1}{3}x=-\frac{2}{3}
Subtracting \frac{2}{3} from itself leaves 0.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=-\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-\frac{2}{3}+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=-\frac{23}{36}
Add -\frac{2}{3} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{6}\right)^{2}=-\frac{23}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{\sqrt{23}i}{6} x-\frac{1}{6}=-\frac{\sqrt{23}i}{6}
Simplify.
x=\frac{1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+1}{6}
Add \frac{1}{6} to both sides of the equation.