Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{1}{2}x-1=-x
Subtract 1 from both sides.
x^{2}-\frac{1}{2}x-1+x=0
Add x to both sides.
x^{2}+\frac{1}{2}x-1=0
Combine -\frac{1}{2}x and x to get \frac{1}{2}x.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{1}{2} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-1\right)}}{2}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+4}}{2}
Multiply -4 times -1.
x=\frac{-\frac{1}{2}±\sqrt{\frac{17}{4}}}{2}
Add \frac{1}{4} to 4.
x=\frac{-\frac{1}{2}±\frac{\sqrt{17}}{2}}{2}
Take the square root of \frac{17}{4}.
x=\frac{\sqrt{17}-1}{2\times 2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{17}}{2}}{2} when ± is plus. Add -\frac{1}{2} to \frac{\sqrt{17}}{2}.
x=\frac{\sqrt{17}-1}{4}
Divide \frac{-1+\sqrt{17}}{2} by 2.
x=\frac{-\sqrt{17}-1}{2\times 2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{17}}{2}}{2} when ± is minus. Subtract \frac{\sqrt{17}}{2} from -\frac{1}{2}.
x=\frac{-\sqrt{17}-1}{4}
Divide \frac{-1-\sqrt{17}}{2} by 2.
x=\frac{\sqrt{17}-1}{4} x=\frac{-\sqrt{17}-1}{4}
The equation is now solved.
x^{2}-\frac{1}{2}x+x=1
Add x to both sides.
x^{2}+\frac{1}{2}x=1
Combine -\frac{1}{2}x and x to get \frac{1}{2}x.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=1+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=1+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{17}{16}
Add 1 to \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{17}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{17}}{4} x+\frac{1}{4}=-\frac{\sqrt{17}}{4}
Simplify.
x=\frac{\sqrt{17}-1}{4} x=\frac{-\sqrt{17}-1}{4}
Subtract \frac{1}{4} from both sides of the equation.