Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{1}{2}x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{1}{2} for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times 2}}{2}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-8}}{2}
Multiply -4 times 2.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{-\frac{31}{4}}}{2}
Add \frac{1}{4} to -8.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{\sqrt{31}i}{2}}{2}
Take the square root of -\frac{31}{4}.
x=\frac{\frac{1}{2}±\frac{\sqrt{31}i}{2}}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{1+\sqrt{31}i}{2\times 2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{31}i}{2}}{2} when ± is plus. Add \frac{1}{2} to \frac{i\sqrt{31}}{2}.
x=\frac{1+\sqrt{31}i}{4}
Divide \frac{1+i\sqrt{31}}{2} by 2.
x=\frac{-\sqrt{31}i+1}{2\times 2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{31}i}{2}}{2} when ± is minus. Subtract \frac{i\sqrt{31}}{2} from \frac{1}{2}.
x=\frac{-\sqrt{31}i+1}{4}
Divide \frac{1-i\sqrt{31}}{2} by 2.
x=\frac{1+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i+1}{4}
The equation is now solved.
x^{2}-\frac{1}{2}x+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{1}{2}x+2-2=-2
Subtract 2 from both sides of the equation.
x^{2}-\frac{1}{2}x=-2
Subtracting 2 from itself leaves 0.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-2+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-2+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{31}{16}
Add -2 to \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=-\frac{31}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{31}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{31}i}{4} x-\frac{1}{4}=-\frac{\sqrt{31}i}{4}
Simplify.
x=\frac{1+\sqrt{31}i}{4} x=\frac{-\sqrt{31}i+1}{4}
Add \frac{1}{4} to both sides of the equation.