Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{4}-3x^{2}=5
Use the distributive property to multiply x^{2} by x^{2}-3.
x^{4}-3x^{2}-5=0
Subtract 5 from both sides.
t^{2}-3t-5=0
Substitute t for x^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\left(-5\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -3 for b, and -5 for c in the quadratic formula.
t=\frac{3±\sqrt{29}}{2}
Do the calculations.
t=\frac{\sqrt{29}+3}{2} t=\frac{3-\sqrt{29}}{2}
Solve the equation t=\frac{3±\sqrt{29}}{2} when ± is plus and when ± is minus.
x=-\sqrt{\frac{\sqrt{29}+3}{2}} x=\sqrt{\frac{\sqrt{29}+3}{2}} x=-i\sqrt{-\frac{3-\sqrt{29}}{2}} x=i\sqrt{-\frac{3-\sqrt{29}}{2}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
x^{4}-3x^{2}=5
Use the distributive property to multiply x^{2} by x^{2}-3.
x^{4}-3x^{2}-5=0
Subtract 5 from both sides.
t^{2}-3t-5=0
Substitute t for x^{2}.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\left(-5\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -3 for b, and -5 for c in the quadratic formula.
t=\frac{3±\sqrt{29}}{2}
Do the calculations.
t=\frac{\sqrt{29}+3}{2} t=\frac{3-\sqrt{29}}{2}
Solve the equation t=\frac{3±\sqrt{29}}{2} when ± is plus and when ± is minus.
x=\frac{\sqrt{2\sqrt{29}+6}}{2} x=-\frac{\sqrt{2\sqrt{29}+6}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.