Solve for a
\left\{\begin{matrix}a=\frac{b\left(x^{2}+1\right)}{x^{2}-1}\text{, }&|x|\neq 1\\a\in \mathrm{R}\text{, }&b=0\text{ and }|x|=1\end{matrix}\right.
Solve for b
b=\frac{a\left(x^{2}-1\right)}{x^{2}+1}
Graph
Share
Copied to clipboard
x^{2}a-x^{2}b=a+b
Use the distributive property to multiply x^{2} by a-b.
x^{2}a-x^{2}b-a=b
Subtract a from both sides.
x^{2}a-a=b+x^{2}b
Add x^{2}b to both sides.
\left(x^{2}-1\right)a=b+x^{2}b
Combine all terms containing a.
\left(x^{2}-1\right)a=bx^{2}+b
The equation is in standard form.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{bx^{2}+b}{x^{2}-1}
Divide both sides by x^{2}-1.
a=\frac{bx^{2}+b}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
a=\frac{b\left(x^{2}+1\right)}{x^{2}-1}
Divide b+bx^{2} by x^{2}-1.
x^{2}a-x^{2}b=a+b
Use the distributive property to multiply x^{2} by a-b.
x^{2}a-x^{2}b-b=a
Subtract b from both sides.
-x^{2}b-b=a-x^{2}a
Subtract x^{2}a from both sides.
-bx^{2}-b=-ax^{2}+a
Reorder the terms.
\left(-x^{2}-1\right)b=-ax^{2}+a
Combine all terms containing b.
\left(-x^{2}-1\right)b=a-ax^{2}
The equation is in standard form.
\frac{\left(-x^{2}-1\right)b}{-x^{2}-1}=\frac{a-ax^{2}}{-x^{2}-1}
Divide both sides by -x^{2}-1.
b=\frac{a-ax^{2}}{-x^{2}-1}
Dividing by -x^{2}-1 undoes the multiplication by -x^{2}-1.
b=-\frac{a\left(1-x^{2}\right)}{x^{2}+1}
Divide a-ax^{2} by -x^{2}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}