Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}\times 243=4
Calculate 3 to the power of 5 and get 243.
x^{2}=\frac{4}{243}
Divide both sides by 243.
x=\frac{2\sqrt{3}}{27} x=-\frac{2\sqrt{3}}{27}
Take the square root of both sides of the equation.
x^{2}\times 243=4
Calculate 3 to the power of 5 and get 243.
x^{2}\times 243-4=0
Subtract 4 from both sides.
243x^{2}-4=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 243\left(-4\right)}}{2\times 243}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 243 for a, 0 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 243\left(-4\right)}}{2\times 243}
Square 0.
x=\frac{0±\sqrt{-972\left(-4\right)}}{2\times 243}
Multiply -4 times 243.
x=\frac{0±\sqrt{3888}}{2\times 243}
Multiply -972 times -4.
x=\frac{0±36\sqrt{3}}{2\times 243}
Take the square root of 3888.
x=\frac{0±36\sqrt{3}}{486}
Multiply 2 times 243.
x=\frac{2\sqrt{3}}{27}
Now solve the equation x=\frac{0±36\sqrt{3}}{486} when ± is plus.
x=-\frac{2\sqrt{3}}{27}
Now solve the equation x=\frac{0±36\sqrt{3}}{486} when ± is minus.
x=\frac{2\sqrt{3}}{27} x=-\frac{2\sqrt{3}}{27}
The equation is now solved.