Evaluate
x^{4}-y^{4}
Expand
x^{4}-y^{4}
Share
Copied to clipboard
x^{2}\left(\frac{xx}{xy}-\frac{yy}{xy}\right)\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
x^{2}\times \frac{xx-yy}{xy}\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, subtract them by subtracting their numerators.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
Do the multiplications in xx-yy.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\left(\frac{yy}{xy}+\frac{xx}{xy}\right)y^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{y}{x} times \frac{y}{y}. Multiply \frac{x}{y} times \frac{x}{x}.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\times \frac{yy+xx}{xy}y^{2}
Since \frac{yy}{xy} and \frac{xx}{xy} have the same denominator, add them by adding their numerators.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Do the multiplications in yy+xx.
\frac{x^{2}\left(x^{2}-y^{2}\right)}{xy}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Express x^{2}\times \frac{x^{2}-y^{2}}{xy} as a single fraction.
\frac{x\left(x^{2}-y^{2}\right)}{y}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Cancel out x in both numerator and denominator.
\frac{x\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}\right)}{yxy}y^{2}
Multiply \frac{x\left(x^{2}-y^{2}\right)}{y} times \frac{y^{2}+x^{2}}{xy} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)}{yy}y^{2}
Cancel out x in both numerator and denominator.
\frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)y^{2}}{yy}
Express \frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)}{yy}y^{2} as a single fraction.
\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Cancel out yy in both numerator and denominator.
\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}\left(\frac{xx}{xy}-\frac{yy}{xy}\right)\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
x^{2}\times \frac{xx-yy}{xy}\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, subtract them by subtracting their numerators.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
Do the multiplications in xx-yy.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\left(\frac{yy}{xy}+\frac{xx}{xy}\right)y^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{y}{x} times \frac{y}{y}. Multiply \frac{x}{y} times \frac{x}{x}.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\times \frac{yy+xx}{xy}y^{2}
Since \frac{yy}{xy} and \frac{xx}{xy} have the same denominator, add them by adding their numerators.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Do the multiplications in yy+xx.
\frac{x^{2}\left(x^{2}-y^{2}\right)}{xy}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Express x^{2}\times \frac{x^{2}-y^{2}}{xy} as a single fraction.
\frac{x\left(x^{2}-y^{2}\right)}{y}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Cancel out x in both numerator and denominator.
\frac{x\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}\right)}{yxy}y^{2}
Multiply \frac{x\left(x^{2}-y^{2}\right)}{y} times \frac{y^{2}+x^{2}}{xy} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)}{yy}y^{2}
Cancel out x in both numerator and denominator.
\frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)y^{2}}{yy}
Express \frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)}{yy}y^{2} as a single fraction.
\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Cancel out yy in both numerator and denominator.
\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}