Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

x^{2}\left(\frac{xx}{xy}-\frac{yy}{xy}\right)\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
x^{2}\times \frac{xx-yy}{xy}\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, subtract them by subtracting their numerators.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
Do the multiplications in xx-yy.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\left(\frac{yy}{xy}+\frac{xx}{xy}\right)y^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{y}{x} times \frac{y}{y}. Multiply \frac{x}{y} times \frac{x}{x}.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\times \frac{yy+xx}{xy}y^{2}
Since \frac{yy}{xy} and \frac{xx}{xy} have the same denominator, add them by adding their numerators.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Do the multiplications in yy+xx.
\frac{x^{2}\left(x^{2}-y^{2}\right)}{xy}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Express x^{2}\times \frac{x^{2}-y^{2}}{xy} as a single fraction.
\frac{x\left(x^{2}-y^{2}\right)}{y}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Cancel out x in both numerator and denominator.
\frac{x\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}\right)}{yxy}y^{2}
Multiply \frac{x\left(x^{2}-y^{2}\right)}{y} times \frac{y^{2}+x^{2}}{xy} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)}{yy}y^{2}
Cancel out x in both numerator and denominator.
\frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)y^{2}}{yy}
Express \frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)}{yy}y^{2} as a single fraction.
\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Cancel out yy in both numerator and denominator.
\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}\left(\frac{xx}{xy}-\frac{yy}{xy}\right)\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
x^{2}\times \frac{xx-yy}{xy}\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, subtract them by subtracting their numerators.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\left(\frac{y}{x}+\frac{x}{y}\right)y^{2}
Do the multiplications in xx-yy.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\left(\frac{yy}{xy}+\frac{xx}{xy}\right)y^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{y}{x} times \frac{y}{y}. Multiply \frac{x}{y} times \frac{x}{x}.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\times \frac{yy+xx}{xy}y^{2}
Since \frac{yy}{xy} and \frac{xx}{xy} have the same denominator, add them by adding their numerators.
x^{2}\times \frac{x^{2}-y^{2}}{xy}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Do the multiplications in yy+xx.
\frac{x^{2}\left(x^{2}-y^{2}\right)}{xy}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Express x^{2}\times \frac{x^{2}-y^{2}}{xy} as a single fraction.
\frac{x\left(x^{2}-y^{2}\right)}{y}\times \frac{y^{2}+x^{2}}{xy}y^{2}
Cancel out x in both numerator and denominator.
\frac{x\left(x^{2}-y^{2}\right)\left(y^{2}+x^{2}\right)}{yxy}y^{2}
Multiply \frac{x\left(x^{2}-y^{2}\right)}{y} times \frac{y^{2}+x^{2}}{xy} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)}{yy}y^{2}
Cancel out x in both numerator and denominator.
\frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)y^{2}}{yy}
Express \frac{\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)}{yy}y^{2} as a single fraction.
\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)
Cancel out yy in both numerator and denominator.
\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-\left(y^{2}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.