Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Use the distributive property to multiply a by x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Use the distributive property to multiply ax-a by x-2 and combine like terms.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Use the distributive property to multiply b by x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Swap sides so that all variable terms are on the left hand side.
ax^{2}-3ax+2a-b+c=x^{2}-bx
Subtract bx from both sides.
ax^{2}-3ax+2a+c=x^{2}-bx+b
Add b to both sides.
ax^{2}-3ax+2a=x^{2}-bx+b-c
Subtract c from both sides.
\left(x^{2}-3x+2\right)a=x^{2}-bx+b-c
Combine all terms containing a.
\frac{\left(x^{2}-3x+2\right)a}{x^{2}-3x+2}=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Divide both sides by x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Dividing by x^{2}-3x+2 undoes the multiplication by x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{\left(x-2\right)\left(x-1\right)}
Divide -bx+b+x^{2}-c by x^{2}-3x+2.
x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Use the distributive property to multiply a by x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Use the distributive property to multiply ax-a by x-2 and combine like terms.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Use the distributive property to multiply b by x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Swap sides so that all variable terms are on the left hand side.
-3ax+2a+bx-b+c=x^{2}-ax^{2}
Subtract ax^{2} from both sides.
2a+bx-b+c=x^{2}-ax^{2}+3ax
Add 3ax to both sides.
bx-b+c=x^{2}-ax^{2}+3ax-2a
Subtract 2a from both sides.
bx-b=x^{2}-ax^{2}+3ax-2a-c
Subtract c from both sides.
bx-b=-ax^{2}+x^{2}+3ax-2a-c
Reorder the terms.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-2a-c
Combine all terms containing b.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-c-2a
The equation is in standard form.
\frac{\left(x-1\right)b}{x-1}=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Divide both sides by x-1.
b=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Use the distributive property to multiply a by x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Use the distributive property to multiply ax-a by x-2 and combine like terms.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Use the distributive property to multiply b by x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Swap sides so that all variable terms are on the left hand side.
ax^{2}-3ax+2a-b+c=x^{2}-bx
Subtract bx from both sides.
ax^{2}-3ax+2a+c=x^{2}-bx+b
Add b to both sides.
ax^{2}-3ax+2a=x^{2}-bx+b-c
Subtract c from both sides.
\left(x^{2}-3x+2\right)a=x^{2}-bx+b-c
Combine all terms containing a.
\frac{\left(x^{2}-3x+2\right)a}{x^{2}-3x+2}=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Divide both sides by x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Dividing by x^{2}-3x+2 undoes the multiplication by x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{\left(x-2\right)\left(x-1\right)}
Divide x^{2}-bx+b-c by x^{2}-3x+2.
x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Use the distributive property to multiply a by x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Use the distributive property to multiply ax-a by x-2 and combine like terms.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Use the distributive property to multiply b by x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Swap sides so that all variable terms are on the left hand side.
-3ax+2a+bx-b+c=x^{2}-ax^{2}
Subtract ax^{2} from both sides.
2a+bx-b+c=x^{2}-ax^{2}+3ax
Add 3ax to both sides.
bx-b+c=x^{2}-ax^{2}+3ax-2a
Subtract 2a from both sides.
bx-b=x^{2}-ax^{2}+3ax-2a-c
Subtract c from both sides.
bx-b=-ax^{2}+x^{2}+3ax-2a-c
Reorder the terms.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-2a-c
Combine all terms containing b.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-c-2a
The equation is in standard form.
\frac{\left(x-1\right)b}{x-1}=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Divide both sides by x-1.
b=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Dividing by x-1 undoes the multiplication by x-1.