Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{-x^{2}+bx+c-b}{\left(x-2\right)\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 2\\a\in \mathrm{C}\text{, }&\left(b=4-c\text{ and }x=2\right)\text{ or }\left(c=1\text{ and }x=1\right)\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{ax^{2}-x^{2}-3ax+c+2a}{x-1}\text{, }&x\neq 1\\b\in \mathrm{C}\text{, }&c=1\text{ and }x=1\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{-x^{2}+bx+c-b}{\left(x-2\right)\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 2\\a\in \mathrm{R}\text{, }&\left(b=4-c\text{ and }x=2\right)\text{ or }\left(c=1\text{ and }x=1\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{ax^{2}-x^{2}-3ax+c+2a}{x-1}\text{, }&x\neq 1\\b\in \mathrm{R}\text{, }&c=1\text{ and }x=1\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Use the distributive property to multiply a by x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Use the distributive property to multiply ax-a by x-2 and combine like terms.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Use the distributive property to multiply b by x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Swap sides so that all variable terms are on the left hand side.
ax^{2}-3ax+2a-b+c=x^{2}-bx
Subtract bx from both sides.
ax^{2}-3ax+2a+c=x^{2}-bx+b
Add b to both sides.
ax^{2}-3ax+2a=x^{2}-bx+b-c
Subtract c from both sides.
\left(x^{2}-3x+2\right)a=x^{2}-bx+b-c
Combine all terms containing a.
\frac{\left(x^{2}-3x+2\right)a}{x^{2}-3x+2}=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Divide both sides by x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Dividing by x^{2}-3x+2 undoes the multiplication by x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{\left(x-2\right)\left(x-1\right)}
Divide -bx+b+x^{2}-c by x^{2}-3x+2.
x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Use the distributive property to multiply a by x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Use the distributive property to multiply ax-a by x-2 and combine like terms.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Use the distributive property to multiply b by x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Swap sides so that all variable terms are on the left hand side.
-3ax+2a+bx-b+c=x^{2}-ax^{2}
Subtract ax^{2} from both sides.
2a+bx-b+c=x^{2}-ax^{2}+3ax
Add 3ax to both sides.
bx-b+c=x^{2}-ax^{2}+3ax-2a
Subtract 2a from both sides.
bx-b=x^{2}-ax^{2}+3ax-2a-c
Subtract c from both sides.
bx-b=-ax^{2}+x^{2}+3ax-2a-c
Reorder the terms.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-2a-c
Combine all terms containing b.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-c-2a
The equation is in standard form.
\frac{\left(x-1\right)b}{x-1}=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Divide both sides by x-1.
b=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Use the distributive property to multiply a by x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Use the distributive property to multiply ax-a by x-2 and combine like terms.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Use the distributive property to multiply b by x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Swap sides so that all variable terms are on the left hand side.
ax^{2}-3ax+2a-b+c=x^{2}-bx
Subtract bx from both sides.
ax^{2}-3ax+2a+c=x^{2}-bx+b
Add b to both sides.
ax^{2}-3ax+2a=x^{2}-bx+b-c
Subtract c from both sides.
\left(x^{2}-3x+2\right)a=x^{2}-bx+b-c
Combine all terms containing a.
\frac{\left(x^{2}-3x+2\right)a}{x^{2}-3x+2}=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Divide both sides by x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{x^{2}-3x+2}
Dividing by x^{2}-3x+2 undoes the multiplication by x^{2}-3x+2.
a=\frac{x^{2}-bx+b-c}{\left(x-2\right)\left(x-1\right)}
Divide x^{2}-bx+b-c by x^{2}-3x+2.
x^{2}=\left(ax-a\right)\left(x-2\right)+b\left(x-1\right)+c
Use the distributive property to multiply a by x-1.
x^{2}=ax^{2}-3ax+2a+b\left(x-1\right)+c
Use the distributive property to multiply ax-a by x-2 and combine like terms.
x^{2}=ax^{2}-3ax+2a+bx-b+c
Use the distributive property to multiply b by x-1.
ax^{2}-3ax+2a+bx-b+c=x^{2}
Swap sides so that all variable terms are on the left hand side.
-3ax+2a+bx-b+c=x^{2}-ax^{2}
Subtract ax^{2} from both sides.
2a+bx-b+c=x^{2}-ax^{2}+3ax
Add 3ax to both sides.
bx-b+c=x^{2}-ax^{2}+3ax-2a
Subtract 2a from both sides.
bx-b=x^{2}-ax^{2}+3ax-2a-c
Subtract c from both sides.
bx-b=-ax^{2}+x^{2}+3ax-2a-c
Reorder the terms.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-2a-c
Combine all terms containing b.
\left(x-1\right)b=-ax^{2}+x^{2}+3ax-c-2a
The equation is in standard form.
\frac{\left(x-1\right)b}{x-1}=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Divide both sides by x-1.
b=\frac{-ax^{2}+x^{2}+3ax-c-2a}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}