Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{1}{81}
Calculate 81 to the power of -1 and get \frac{1}{81}.
x^{2}-\frac{1}{81}=0
Subtract \frac{1}{81} from both sides.
81x^{2}-1=0
Multiply both sides by 81.
\left(9x-1\right)\left(9x+1\right)=0
Consider 81x^{2}-1. Rewrite 81x^{2}-1 as \left(9x\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{9} x=-\frac{1}{9}
To find equation solutions, solve 9x-1=0 and 9x+1=0.
x^{2}=\frac{1}{81}
Calculate 81 to the power of -1 and get \frac{1}{81}.
x=\frac{1}{9} x=-\frac{1}{9}
Take the square root of both sides of the equation.
x^{2}=\frac{1}{81}
Calculate 81 to the power of -1 and get \frac{1}{81}.
x^{2}-\frac{1}{81}=0
Subtract \frac{1}{81} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{81}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1}{81} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1}{81}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{4}{81}}}{2}
Multiply -4 times -\frac{1}{81}.
x=\frac{0±\frac{2}{9}}{2}
Take the square root of \frac{4}{81}.
x=\frac{1}{9}
Now solve the equation x=\frac{0±\frac{2}{9}}{2} when ± is plus.
x=-\frac{1}{9}
Now solve the equation x=\frac{0±\frac{2}{9}}{2} when ± is minus.
x=\frac{1}{9} x=-\frac{1}{9}
The equation is now solved.