Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x=-18
Subtract 6x from both sides.
x^{2}-6x+18=0
Add 18 to both sides.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 18}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -6 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 18}}{2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-72}}{2}
Multiply -4 times 18.
x=\frac{-\left(-6\right)±\sqrt{-36}}{2}
Add 36 to -72.
x=\frac{-\left(-6\right)±6i}{2}
Take the square root of -36.
x=\frac{6±6i}{2}
The opposite of -6 is 6.
x=\frac{6+6i}{2}
Now solve the equation x=\frac{6±6i}{2} when ± is plus. Add 6 to 6i.
x=3+3i
Divide 6+6i by 2.
x=\frac{6-6i}{2}
Now solve the equation x=\frac{6±6i}{2} when ± is minus. Subtract 6i from 6.
x=3-3i
Divide 6-6i by 2.
x=3+3i x=3-3i
The equation is now solved.
x^{2}-6x=-18
Subtract 6x from both sides.
x^{2}-6x+\left(-3\right)^{2}=-18+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-18+9
Square -3.
x^{2}-6x+9=-9
Add -18 to 9.
\left(x-3\right)^{2}=-9
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-9}
Take the square root of both sides of the equation.
x-3=3i x-3=-3i
Simplify.
x=3+3i x=3-3i
Add 3 to both sides of the equation.