Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=i\sqrt{10-4\sqrt{3}} x=-i\sqrt{10-4\sqrt{3}}
The equation is now solved.
x^{2}-4\sqrt{3}=-10
Subtract 4\sqrt{3} from both sides.
x^{2}-4\sqrt{3}+10=0
Add 10 to both sides.
x^{2}+10-4\sqrt{3}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(10-4\sqrt{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -4\sqrt{3}+10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(10-4\sqrt{3}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{16\sqrt{3}-40}}{2}
Multiply -4 times -4\sqrt{3}+10.
x=\frac{0±2i\sqrt{10-4\sqrt{3}}}{2}
Take the square root of 16\sqrt{3}-40.
x=i\sqrt{10-4\sqrt{3}}
Now solve the equation x=\frac{0±2i\sqrt{10-4\sqrt{3}}}{2} when ± is plus.
x=-i\sqrt{10-4\sqrt{3}}
Now solve the equation x=\frac{0±2i\sqrt{10-4\sqrt{3}}}{2} when ± is minus.
x=i\sqrt{10-4\sqrt{3}} x=-i\sqrt{10-4\sqrt{3}}
The equation is now solved.