Solve for x
x=\sqrt{131}+11\approx 22.445523142
x=11-\sqrt{131}\approx -0.445523142
Graph
Share
Copied to clipboard
x^{2}-22x=10
Subtract 22x from both sides.
x^{2}-22x-10=0
Subtract 10 from both sides.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-10\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -22 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\left(-10\right)}}{2}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484+40}}{2}
Multiply -4 times -10.
x=\frac{-\left(-22\right)±\sqrt{524}}{2}
Add 484 to 40.
x=\frac{-\left(-22\right)±2\sqrt{131}}{2}
Take the square root of 524.
x=\frac{22±2\sqrt{131}}{2}
The opposite of -22 is 22.
x=\frac{2\sqrt{131}+22}{2}
Now solve the equation x=\frac{22±2\sqrt{131}}{2} when ± is plus. Add 22 to 2\sqrt{131}.
x=\sqrt{131}+11
Divide 22+2\sqrt{131} by 2.
x=\frac{22-2\sqrt{131}}{2}
Now solve the equation x=\frac{22±2\sqrt{131}}{2} when ± is minus. Subtract 2\sqrt{131} from 22.
x=11-\sqrt{131}
Divide 22-2\sqrt{131} by 2.
x=\sqrt{131}+11 x=11-\sqrt{131}
The equation is now solved.
x^{2}-22x=10
Subtract 22x from both sides.
x^{2}-22x+\left(-11\right)^{2}=10+\left(-11\right)^{2}
Divide -22, the coefficient of the x term, by 2 to get -11. Then add the square of -11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-22x+121=10+121
Square -11.
x^{2}-22x+121=131
Add 10 to 121.
\left(x-11\right)^{2}=131
Factor x^{2}-22x+121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-11\right)^{2}}=\sqrt{131}
Take the square root of both sides of the equation.
x-11=\sqrt{131} x-11=-\sqrt{131}
Simplify.
x=\sqrt{131}+11 x=11-\sqrt{131}
Add 11 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}