Solve for P (complex solution)
\left\{\begin{matrix}P=\frac{x^{2}}{2\left(\sqrt{3}x+b\right)}\text{, }&x\neq -\frac{\sqrt{3}b}{3}\\P\in \mathrm{C}\text{, }&x=0\text{ and }b=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{x\left(-2\sqrt{3}P+x\right)}{2P}\text{, }&P\neq 0\\b\in \mathrm{C}\text{, }&x=0\text{ and }P=0\end{matrix}\right.
Solve for P
\left\{\begin{matrix}P=\frac{x^{2}}{2\left(\sqrt{3}x+b\right)}\text{, }&x\neq -\frac{\sqrt{3}b}{3}\\P\in \mathrm{R}\text{, }&x=0\text{ and }b=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{x\left(-2\sqrt{3}P+x\right)}{2P}\text{, }&P\neq 0\\b\in \mathrm{R}\text{, }&x=0\text{ and }P=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}=2P\sqrt{3}x+2Pb
Use the distributive property to multiply 2P by \sqrt{3}x+b.
2P\sqrt{3}x+2Pb=x^{2}
Swap sides so that all variable terms are on the left hand side.
\left(2\sqrt{3}x+2b\right)P=x^{2}
Combine all terms containing P.
\frac{\left(2\sqrt{3}x+2b\right)P}{2\sqrt{3}x+2b}=\frac{x^{2}}{2\sqrt{3}x+2b}
Divide both sides by 2\sqrt{3}x+2b.
P=\frac{x^{2}}{2\sqrt{3}x+2b}
Dividing by 2\sqrt{3}x+2b undoes the multiplication by 2\sqrt{3}x+2b.
P=\frac{x^{2}}{2\left(\sqrt{3}x+b\right)}
Divide x^{2} by 2\sqrt{3}x+2b.
x^{2}=2P\sqrt{3}x+2Pb
Use the distributive property to multiply 2P by \sqrt{3}x+b.
2P\sqrt{3}x+2Pb=x^{2}
Swap sides so that all variable terms are on the left hand side.
2Pb=x^{2}-2P\sqrt{3}x
Subtract 2P\sqrt{3}x from both sides.
2Pb=-2\sqrt{3}Px+x^{2}
The equation is in standard form.
\frac{2Pb}{2P}=\frac{x\left(-2\sqrt{3}P+x\right)}{2P}
Divide both sides by 2P.
b=\frac{x\left(-2\sqrt{3}P+x\right)}{2P}
Dividing by 2P undoes the multiplication by 2P.
x^{2}=2P\sqrt{3}x+2Pb
Use the distributive property to multiply 2P by \sqrt{3}x+b.
2P\sqrt{3}x+2Pb=x^{2}
Swap sides so that all variable terms are on the left hand side.
\left(2\sqrt{3}x+2b\right)P=x^{2}
Combine all terms containing P.
\frac{\left(2\sqrt{3}x+2b\right)P}{2\sqrt{3}x+2b}=\frac{x^{2}}{2\sqrt{3}x+2b}
Divide both sides by 2\sqrt{3}x+2b.
P=\frac{x^{2}}{2\sqrt{3}x+2b}
Dividing by 2\sqrt{3}x+2b undoes the multiplication by 2\sqrt{3}x+2b.
P=\frac{x^{2}}{2\left(\sqrt{3}x+b\right)}
Divide x^{2} by 2\sqrt{3}x+2b.
x^{2}=2P\sqrt{3}x+2Pb
Use the distributive property to multiply 2P by \sqrt{3}x+b.
2P\sqrt{3}x+2Pb=x^{2}
Swap sides so that all variable terms are on the left hand side.
2Pb=x^{2}-2P\sqrt{3}x
Subtract 2P\sqrt{3}x from both sides.
2Pb=-2\sqrt{3}Px+x^{2}
The equation is in standard form.
\frac{2Pb}{2P}=\frac{x\left(-2\sqrt{3}P+x\right)}{2P}
Divide both sides by 2P.
b=\frac{x\left(-2\sqrt{3}P+x\right)}{2P}
Dividing by 2P undoes the multiplication by 2P.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}