Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}\right)^{2}=\left(2\sqrt{1-x^{2}}\right)^{2}
Square both sides of the equation.
x^{4}=\left(2\sqrt{1-x^{2}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}=2^{2}\left(\sqrt{1-x^{2}}\right)^{2}
Expand \left(2\sqrt{1-x^{2}}\right)^{2}.
x^{4}=4\left(\sqrt{1-x^{2}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{4}=4\left(1-x^{2}\right)
Calculate \sqrt{1-x^{2}} to the power of 2 and get 1-x^{2}.
x^{4}=4-4x^{2}
Use the distributive property to multiply 4 by 1-x^{2}.
x^{4}-4=-4x^{2}
Subtract 4 from both sides.
x^{4}-4+4x^{2}=0
Add 4x^{2} to both sides.
t^{2}+4t-4=0
Substitute t for x^{2}.
t=\frac{-4±\sqrt{4^{2}-4\times 1\left(-4\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 4 for b, and -4 for c in the quadratic formula.
t=\frac{-4±4\sqrt{2}}{2}
Do the calculations.
t=2\sqrt{2}-2 t=-2\sqrt{2}-2
Solve the equation t=\frac{-4±4\sqrt{2}}{2} when ± is plus and when ± is minus.
x=\frac{\sqrt{8\sqrt{2}-8}}{2} x=-\frac{\sqrt{8\sqrt{2}-8}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
\left(\frac{\sqrt{8\sqrt{2}-8}}{2}\right)^{2}=2\sqrt{1-\left(\frac{\sqrt{8\sqrt{2}-8}}{2}\right)^{2}}
Substitute \frac{\sqrt{8\sqrt{2}-8}}{2} for x in the equation x^{2}=2\sqrt{1-x^{2}}.
2\times 2^{\frac{1}{2}}-2=2\times 2^{\frac{1}{2}}-2
Simplify. The value x=\frac{\sqrt{8\sqrt{2}-8}}{2} satisfies the equation.
\left(-\frac{\sqrt{8\sqrt{2}-8}}{2}\right)^{2}=2\sqrt{1-\left(-\frac{\sqrt{8\sqrt{2}-8}}{2}\right)^{2}}
Substitute -\frac{\sqrt{8\sqrt{2}-8}}{2} for x in the equation x^{2}=2\sqrt{1-x^{2}}.
2\times 2^{\frac{1}{2}}-2=2\times 2^{\frac{1}{2}}-2
Simplify. The value x=-\frac{\sqrt{8\sqrt{2}-8}}{2} satisfies the equation.
x=\frac{\sqrt{8\sqrt{2}-8}}{2} x=-\frac{\sqrt{8\sqrt{2}-8}}{2}
List all solutions of x^{2}=2\sqrt{1-x^{2}}.