Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+8x=3
Add 8x to both sides.
x^{2}+8x-3=0
Subtract 3 from both sides.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-3\right)}}{2}
Square 8.
x=\frac{-8±\sqrt{64+12}}{2}
Multiply -4 times -3.
x=\frac{-8±\sqrt{76}}{2}
Add 64 to 12.
x=\frac{-8±2\sqrt{19}}{2}
Take the square root of 76.
x=\frac{2\sqrt{19}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{19}}{2} when ± is plus. Add -8 to 2\sqrt{19}.
x=\sqrt{19}-4
Divide -8+2\sqrt{19} by 2.
x=\frac{-2\sqrt{19}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{19}}{2} when ± is minus. Subtract 2\sqrt{19} from -8.
x=-\sqrt{19}-4
Divide -8-2\sqrt{19} by 2.
x=\sqrt{19}-4 x=-\sqrt{19}-4
The equation is now solved.
x^{2}+8x=3
Add 8x to both sides.
x^{2}+8x+4^{2}=3+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=3+16
Square 4.
x^{2}+8x+16=19
Add 3 to 16.
\left(x+4\right)^{2}=19
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{19}
Take the square root of both sides of the equation.
x+4=\sqrt{19} x+4=-\sqrt{19}
Simplify.
x=\sqrt{19}-4 x=-\sqrt{19}-4
Subtract 4 from both sides of the equation.
x^{2}+8x=3
Add 8x to both sides.
x^{2}+8x-3=0
Subtract 3 from both sides.
x=\frac{-8±\sqrt{8^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-3\right)}}{2}
Square 8.
x=\frac{-8±\sqrt{64+12}}{2}
Multiply -4 times -3.
x=\frac{-8±\sqrt{76}}{2}
Add 64 to 12.
x=\frac{-8±2\sqrt{19}}{2}
Take the square root of 76.
x=\frac{2\sqrt{19}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{19}}{2} when ± is plus. Add -8 to 2\sqrt{19}.
x=\sqrt{19}-4
Divide -8+2\sqrt{19} by 2.
x=\frac{-2\sqrt{19}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{19}}{2} when ± is minus. Subtract 2\sqrt{19} from -8.
x=-\sqrt{19}-4
Divide -8-2\sqrt{19} by 2.
x=\sqrt{19}-4 x=-\sqrt{19}-4
The equation is now solved.
x^{2}+8x=3
Add 8x to both sides.
x^{2}+8x+4^{2}=3+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=3+16
Square 4.
x^{2}+8x+16=19
Add 3 to 16.
\left(x+4\right)^{2}=19
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{19}
Take the square root of both sides of the equation.
x+4=\sqrt{19} x+4=-\sqrt{19}
Simplify.
x=\sqrt{19}-4 x=-\sqrt{19}-4
Subtract 4 from both sides of the equation.