Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=x^{2}-\frac{16}{3}x+\frac{64}{9}+\left(\frac{4\sqrt{5}}{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{8}{3}\right)^{2}.
x^{2}=x^{2}-\frac{16}{3}x+\frac{64}{9}+\frac{\left(4\sqrt{5}\right)^{2}}{3^{2}}
To raise \frac{4\sqrt{5}}{3} to a power, raise both numerator and denominator to the power and then divide.
x^{2}=x^{2}-\frac{16}{3}x+\frac{64}{9}+\frac{\left(4\sqrt{5}\right)^{2}}{9}
To add or subtract expressions, expand them to make their denominators the same. Expand 3^{2}.
x^{2}=x^{2}-\frac{16}{3}x+\frac{64+\left(4\sqrt{5}\right)^{2}}{9}
Since \frac{64}{9} and \frac{\left(4\sqrt{5}\right)^{2}}{9} have the same denominator, add them by adding their numerators.
x^{2}=x^{2}-\frac{16}{3}x+\frac{64+4^{2}\left(\sqrt{5}\right)^{2}}{9}
Expand \left(4\sqrt{5}\right)^{2}.
x^{2}=x^{2}-\frac{16}{3}x+\frac{64+16\left(\sqrt{5}\right)^{2}}{9}
Calculate 4 to the power of 2 and get 16.
x^{2}=x^{2}-\frac{16}{3}x+\frac{64+16\times 5}{9}
The square of \sqrt{5} is 5.
x^{2}=x^{2}-\frac{16}{3}x+\frac{64+80}{9}
Multiply 16 and 5 to get 80.
x^{2}=x^{2}-\frac{16}{3}x+\frac{144}{9}
Add 64 and 80 to get 144.
x^{2}=x^{2}-\frac{16}{3}x+16
Divide 144 by 9 to get 16.
x^{2}-x^{2}=-\frac{16}{3}x+16
Subtract x^{2} from both sides.
0=-\frac{16}{3}x+16
Combine x^{2} and -x^{2} to get 0.
-\frac{16}{3}x+16=0
Swap sides so that all variable terms are on the left hand side.
-\frac{16}{3}x=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
x=-16\left(-\frac{3}{16}\right)
Multiply both sides by -\frac{3}{16}, the reciprocal of -\frac{16}{3}.
x=3
Multiply -16 and -\frac{3}{16} to get 3.