Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=x^{2}+6x+9+\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}=x^{2}+6x+9+x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}=2x^{2}+6x+9-2x+1
Combine x^{2} and x^{2} to get 2x^{2}.
x^{2}=2x^{2}+4x+9+1
Combine 6x and -2x to get 4x.
x^{2}=2x^{2}+4x+10
Add 9 and 1 to get 10.
x^{2}-2x^{2}=4x+10
Subtract 2x^{2} from both sides.
-x^{2}=4x+10
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-4x=10
Subtract 4x from both sides.
-x^{2}-4x-10=0
Subtract 10 from both sides.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -4 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+4\left(-10\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-4\right)±\sqrt{16-40}}{2\left(-1\right)}
Multiply 4 times -10.
x=\frac{-\left(-4\right)±\sqrt{-24}}{2\left(-1\right)}
Add 16 to -40.
x=\frac{-\left(-4\right)±2\sqrt{6}i}{2\left(-1\right)}
Take the square root of -24.
x=\frac{4±2\sqrt{6}i}{2\left(-1\right)}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{6}i}{-2}
Multiply 2 times -1.
x=\frac{4+2\sqrt{6}i}{-2}
Now solve the equation x=\frac{4±2\sqrt{6}i}{-2} when ± is plus. Add 4 to 2i\sqrt{6}.
x=-\sqrt{6}i-2
Divide 4+2i\sqrt{6} by -2.
x=\frac{-2\sqrt{6}i+4}{-2}
Now solve the equation x=\frac{4±2\sqrt{6}i}{-2} when ± is minus. Subtract 2i\sqrt{6} from 4.
x=-2+\sqrt{6}i
Divide 4-2i\sqrt{6} by -2.
x=-\sqrt{6}i-2 x=-2+\sqrt{6}i
The equation is now solved.
x^{2}=x^{2}+6x+9+\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}=x^{2}+6x+9+x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}=2x^{2}+6x+9-2x+1
Combine x^{2} and x^{2} to get 2x^{2}.
x^{2}=2x^{2}+4x+9+1
Combine 6x and -2x to get 4x.
x^{2}=2x^{2}+4x+10
Add 9 and 1 to get 10.
x^{2}-2x^{2}=4x+10
Subtract 2x^{2} from both sides.
-x^{2}=4x+10
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-4x=10
Subtract 4x from both sides.
\frac{-x^{2}-4x}{-1}=\frac{10}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{4}{-1}\right)x=\frac{10}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+4x=\frac{10}{-1}
Divide -4 by -1.
x^{2}+4x=-10
Divide 10 by -1.
x^{2}+4x+2^{2}=-10+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=-10+4
Square 2.
x^{2}+4x+4=-6
Add -10 to 4.
\left(x+2\right)^{2}=-6
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-6}
Take the square root of both sides of the equation.
x+2=\sqrt{6}i x+2=-\sqrt{6}i
Simplify.
x=-2+\sqrt{6}i x=-\sqrt{6}i-2
Subtract 2 from both sides of the equation.