Solve for x
x = -\frac{11}{7} = -1\frac{4}{7} \approx -1.571428571
x = -\frac{11}{5} = -2\frac{1}{5} = -2.2
Graph
Share
Copied to clipboard
x^{2}=36x^{2}+132x+121
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6x+11\right)^{2}.
x^{2}-36x^{2}=132x+121
Subtract 36x^{2} from both sides.
-35x^{2}=132x+121
Combine x^{2} and -36x^{2} to get -35x^{2}.
-35x^{2}-132x=121
Subtract 132x from both sides.
-35x^{2}-132x-121=0
Subtract 121 from both sides.
x=\frac{-\left(-132\right)±\sqrt{\left(-132\right)^{2}-4\left(-35\right)\left(-121\right)}}{2\left(-35\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -35 for a, -132 for b, and -121 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-132\right)±\sqrt{17424-4\left(-35\right)\left(-121\right)}}{2\left(-35\right)}
Square -132.
x=\frac{-\left(-132\right)±\sqrt{17424+140\left(-121\right)}}{2\left(-35\right)}
Multiply -4 times -35.
x=\frac{-\left(-132\right)±\sqrt{17424-16940}}{2\left(-35\right)}
Multiply 140 times -121.
x=\frac{-\left(-132\right)±\sqrt{484}}{2\left(-35\right)}
Add 17424 to -16940.
x=\frac{-\left(-132\right)±22}{2\left(-35\right)}
Take the square root of 484.
x=\frac{132±22}{2\left(-35\right)}
The opposite of -132 is 132.
x=\frac{132±22}{-70}
Multiply 2 times -35.
x=\frac{154}{-70}
Now solve the equation x=\frac{132±22}{-70} when ± is plus. Add 132 to 22.
x=-\frac{11}{5}
Reduce the fraction \frac{154}{-70} to lowest terms by extracting and canceling out 14.
x=\frac{110}{-70}
Now solve the equation x=\frac{132±22}{-70} when ± is minus. Subtract 22 from 132.
x=-\frac{11}{7}
Reduce the fraction \frac{110}{-70} to lowest terms by extracting and canceling out 10.
x=-\frac{11}{5} x=-\frac{11}{7}
The equation is now solved.
x^{2}=36x^{2}+132x+121
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6x+11\right)^{2}.
x^{2}-36x^{2}=132x+121
Subtract 36x^{2} from both sides.
-35x^{2}=132x+121
Combine x^{2} and -36x^{2} to get -35x^{2}.
-35x^{2}-132x=121
Subtract 132x from both sides.
\frac{-35x^{2}-132x}{-35}=\frac{121}{-35}
Divide both sides by -35.
x^{2}+\left(-\frac{132}{-35}\right)x=\frac{121}{-35}
Dividing by -35 undoes the multiplication by -35.
x^{2}+\frac{132}{35}x=\frac{121}{-35}
Divide -132 by -35.
x^{2}+\frac{132}{35}x=-\frac{121}{35}
Divide 121 by -35.
x^{2}+\frac{132}{35}x+\left(\frac{66}{35}\right)^{2}=-\frac{121}{35}+\left(\frac{66}{35}\right)^{2}
Divide \frac{132}{35}, the coefficient of the x term, by 2 to get \frac{66}{35}. Then add the square of \frac{66}{35} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{132}{35}x+\frac{4356}{1225}=-\frac{121}{35}+\frac{4356}{1225}
Square \frac{66}{35} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{132}{35}x+\frac{4356}{1225}=\frac{121}{1225}
Add -\frac{121}{35} to \frac{4356}{1225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{66}{35}\right)^{2}=\frac{121}{1225}
Factor x^{2}+\frac{132}{35}x+\frac{4356}{1225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{66}{35}\right)^{2}}=\sqrt{\frac{121}{1225}}
Take the square root of both sides of the equation.
x+\frac{66}{35}=\frac{11}{35} x+\frac{66}{35}=-\frac{11}{35}
Simplify.
x=-\frac{11}{7} x=-\frac{11}{5}
Subtract \frac{66}{35} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}